Skip to main content
Log in

Simulating tornado-like enhancement of heat transfer under low-velocity motion of air in a rectangular dimpled channel. Part 2: Results of parametric studies

  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

Results from parametric studies on investigating enhancement of heat transfer by means of cavity-and ditch-shaped tornado-like intensifiers are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Isaev, A. I. Leont’ev, and P. A. Baranov, “Simulating Tornado-Like Enhancement of Heat Transfer for Low-Velocity Motion of Air in a Rectangular Dimpled Channel. Part 1: Selection and Justification of Calculation Methods,” Teploenergetika, No. 3, 22–28 (2007) [Therm. Eng., No. 3 (2007)].

  2. A. V. Shchukin, A. P. Kozlov, R. S. Agachev, and Ya. P. Chudnovskii, Enhancement of Heat Transfer by Means of Spherical Cavities under the Effect of Disturbing Factors, Ed. by V. E. Alemasov (Kaz. Gos. Tekhn. Univ., Kazan, 2003) [in Russian].

    Google Scholar 

  3. G. I. Kiknadze, I. A. Gachechiladze, and V. V. Alekseev, Self-Organization of Tornado-Like Structures in the Flows of Viscous Continuous Media and the Enhancement of Heat Transfer Accompanying This Phenomenon (MEI, Moscow, 2005) [in Russian].

    Google Scholar 

  4. A. A. Khalatov, Heat Transfer and Hydrodynamics Near Surface Indents (Cavities) (Kiev, 2005) [in Russian].

  5. E. F. Kalinin, G. A. Dreitser, I. Z. Kopp, and A. S. Myakochin, Efficient Heat-Transfer Surfaces (Energoatomizdat, Moscow, 1998) [in Russian].

    Google Scholar 

  6. G. A. Dreitser, S. A. Isaev, and I. E. Lobanov, “Calculating Convective Heat Transfer in a Tube with Vortex Generators Periodically Arranged on its Surface,” Teplofiz. Vys. Temp. 43(2), 223–230 (2005).

    Google Scholar 

  7. V. N. Afanasiev, Ya. P. Chudnovsky, S. A. Isaev, et al., “Measurement and Numerical Simulation of Vortex Turbulent Flow and Heat Transfer in Spherical Cavity,” in Proceedings of the Fifth International Symposium on Refined Flow Modeling and Turbulent Measurement, Paris, 1993, pp. 391–398.

  8. S. A. Isaev, A. I. Leont’ev, Kh. T. Metov, and V. B. Kharchenko, “Simulating the Effect of Viscosity on Tornado-Like Heat Transfer for a Shallow Cavity on a Plane Flowed over by Turbulent Flow,” Inzh. Fiz. Zh. 75(4), 98–104 (2002).

    Google Scholar 

  9. P. A. Baranov, S. A. Isaev, A. I. Leont’ev, et al., “Physical and Numerical Simulation of Vortex Heat Transfer for a Spherical Cavity on a Plane Flowed over by Turbulent Flow,” Teplofiz. Aeromekh. 9(4), 521–532 (2002).

    Google Scholar 

  10. S. A. Isaev, A. I. Leont’ev, N. A. Kudryavtsev, and I. A. Pyshnyi, “The Influence the Change in a Vortex Structure Caused by Increasing the Depth of a Spherical Cavity on the Wall of a Narrow Plane-Parallel Channel Has on a Stepped Change in Heat Transfer,” Teplofiz. Vys. Temp. 41(2), 268–272 (2003).

    Google Scholar 

  11. S. A. Isaev and A. I. Leont’ev, “Numerical Simulation of Vortex Enhancement of Heat Transfer when a Turbulent Flows over a Spherical Cavity on the Wall of a Narrow Channel,” Teplofiz. Vys. Temp. 41(5), 755–770 (2003).

    Google Scholar 

  12. S. A. Isaev, A. I. Leont’ev, A. V. Mityakov, et al., “Local Coefficients of Heat Transfer on the Surface of an Elongated Cavity,” in Proceedings of the Third National Russian Conference on Heat Transfer. Vol. 6: Enhancement of Heat Transfer. Radiant and Complex Heat Transfer (MEI, Moscow, 2002), pp. 114–117.

    Google Scholar 

  13. S. A. Isaev, A. I. Leont’ev, A. V. Mityakov, and I. A. Pyshnyi, “Enhancement of Tornado-Like Heat Transfer in Asymmetrical Cavities on a Flat Wall,” Inzh. Fiz. Zh. 76(2), 31–34 (2003).

    Google Scholar 

  14. S. A. Isaev, A. I. Leont’ev, P. A. Baranov, and I. A. Pyshnyi, “A Numerical Analysis of the Effect on Turbulent Heat Transfer of a Spherical Cavity on a Flat Wall,” Inzh. Fiz. Zh. 76(1), 52–59 (2003).

    Google Scholar 

  15. Yu. A. Bystrov, S. A. Isaev, N. A. Kudryavtsev, and A. I. Leont’ev, Numerical Simulation of Vortex Enhancement of Heat Transfer in Tube Banks (Sudostroenie, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  16. Y.-L. Lin, T. I.-P. Shih, and M. K. Chyu, Computations of Flow and Heat Transfer in a Channel with Rows of Hemispherical Cavities, ASME Paper, 99-GT-263, 1999.

  17. P. M. Ligrani, M. M. Oliveira, and T. Blaskovitch, “Comparison of Heat Transfer Augmentation Techniques,” AIAA J. 41(3), 337–362 (2003).

    Article  Google Scholar 

  18. J. Park and P. M. Ligrani, “Numerical Predictions of Heat Transfer and Fluid Flow Characteristics for Seven Different Dimpled Surfaces in a Channel,” Numerical Heat Transfer 47(A), 1–24 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.A. Isaev, A.I. Leont’ev, P.A. Baranov, 2007, published in Teploenergetika.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaev, S.A., Leont’ev, A.I. & Baranov, P.A. Simulating tornado-like enhancement of heat transfer under low-velocity motion of air in a rectangular dimpled channel. Part 2: Results of parametric studies. Therm. Eng. 54, 655–663 (2007). https://doi.org/10.1134/S0040601507080101

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601507080101

Keywords

Navigation