Skip to main content
Log in

Boiling crisis under liquid flow in channels with a high mass flowrate and subcooling

  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

A physical model of liquid boiling crisis in channels with smooth walls at high subcooling and high mass flowrate is presented. The condition of the crisis incipience is stated. The calculation correlation for critical heat flowrate q cr in channels is given, which enables to analyze the effect of the channel diameter, subcooling, and mass flowrate on q cr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Zeigarnik, I. V. Kirillova, A. I. Klimov, and E. G. Smirnova, “Some Results of Hydraulic Resistance Measurements under Boiling of Water Subcooled Relative to Saturation Temperature,” Teplof. Vys. Temp. 21(2), 303 (1983).

    Google Scholar 

  2. V. V. Yagov and V. A. Puzin, “Boiling Crisis under Conditions of Forced Flow of Subcooled Liquid,” Teploenergetika, No. 10, 52–54 (1985).

  3. Yu. A. Zeigarnik, “On Universal Model of Subcooled-Liquid Boiling in Channels,” Teplof. Vys. Temp. 34(1), 52 (1996).

    Google Scholar 

  4. Yu. A. Zeigarnik, “Critical Heat Flux and Pressure Drop Under Forced Convection Boiling of Subcooled Water: Experimental Data,” in Proceedings 10th Int. Heat Transfer Conf., Brighton, UK, 1994, Vol. 7, p. 581.

  5. A. P. Ornatskii and A. M. Kichigin, “Critical Heat Flux under Subcooled-Water Boiling in Tubes of Small Diameter in High-Pressure Region,” Teploenergetika, No. 6, 44–47 (1962).

  6. Yu. A. Zeigarnik, A. I. Klimov, A. G. Rotinov, and B. A. Smyslov, “Some Experimental Results on Burnout in Subcooled Water Flow Boiling,” Teploenergetika, No. 3, 14–20 (1997) [Thermal Eng. 44 (3), 184–190 (1997)].

  7. P. L. Kirillov, “Modern Problems of Heat-Transfer Crisis in Channels,” Teploenergetika, No. 5, 9–15 (1992).

  8. A. A. Avdeev, “Reynolds Analogy for Undeveloped Surface Boiling under Forced Flow Conditions,” Teploenergetika, No. 3, 23–26 (1982).

  9. C. H. Wang and V. K. Dhir, “On the Gas Entrapment and Nucleation Site Density During Pool Boiling of Saturated Water,” ASME Journal of Heat Transfer Vol. 115, 670 (1993).

    Article  Google Scholar 

  10. V. V. Yagov, V. A. Puzin, and L. A. Sukomel, “The Approximate Model for Critical Heat Flux under Subcooled Flow Boiling Conditions,” in Proceedings of 2nd European Thermal-Science and UIT National Heat Transfer Conf., 1996, pp. 183–191.

  11. A. P. Ornatskii, “Effect of Tube Length and Diameter on Critical Heat Flux Value under Forced Convection of Water Subcooled Relative to a Saturation Temperature,” Teploenergetika, No. 6, 67–69 (1960).

  12. S. T. Yin, D. C. Groeneveld, and M. Wakayama “The Effect of Radial Flux Distribution on Critical Heat Flux in 37-rod Bundles,” in Proc. 12th National Heat Transfer Conf., Minneapolis, USA, July 28–31, 1991, Vol. 5, pp. 277–283.

  13. M. A. Gotovskii, “Development of Methods of Thermohydraulic Calculations Regarding the Objects of Nuclear Power Engineering and Technologies,” Doctoral Dissertation in Engineering Sciences (St. Petersburg, 2000).

  14. S. Inada, T. Taguchi, W. Yang, “Effects of Vertical Fins on Local Heat Transfer Performance in a Horizontal Fluid Layer,” Int. J. of Heat and Mass Transfer 42(15), 2897–2903 (1999).

    Article  Google Scholar 

  15. K. Kumagai, K. Noriyasu, Y. Tsuji, et al., “Multi-Dimensional Characteristics of Surface Waves on the Liquid Film Flow in 3 × 3 Rod Bundle,” in Proc. 4th Int. ICMF’2001, New Orleans, LA, USA, May 27–June 1, 2001, p. 912.

  16. D. A. Labuntsov and A. P. Kryukov, “Analysis of Intensive Evaporation and Condensation,” Int. J. Heat and Mass Transfer 22, 989 (1979).

    Article  MATH  Google Scholar 

  17. D. A. Labuntsov and A. P. Kryukov, “Processes of Intense Evaporation,” Teploenergetika, No. 4, 8–11 (1977).

  18. W. Frost and G. S. Dzakovich, “An Extension of the Method of Predicting Incipient Boiling on Commercially Finished Surfaces,” in Proc. ASME/AIChE Heat Transfer Conf., Seattle, USA, 1966, Paper 67-HT-61.

  19. S. Yu. Snytin, “Experimental Study and Development of Generalized Technique of Calculation of a Film-Boiling Crisis Temperature on Submerged Heating Sulface,” Candidate Dissertation in Engineering Sciences (Moscow, 1987).

  20. “Boiling in Subcooled Water During Flow up Heated Tubes or Annuli,” in Proc. Symp. Boiling Heat Transfer Steam Generating Units Heat Exchangers (Manchester, UK, Sept. 15–16, 1965), Paper No. 6.

  21. D. A. Labuntsov, “Heat Transfer Problems under Nucleate Boiling of Liquids,” Teploenergetika, No. 9, 14–19 (1972).

  22. Yu. E. Pokhvalov, I. V. Kronin, and I. V. Kurganova, “Generalization of Experimental Data on Heat Transfer under Nucleate Boiling of Subcooled Liquids,” Teploenergetika, No. 5, 63–68 (1966).

  23. G. P. Celata, M. Cumo, and A. Mariani, “Recent Achievements in Subcooled Water DNB at Very High Heat Fluxes,” Russian Journal of Engineering Thermophysics 4, 83 (1994).

    Google Scholar 

  24. G. P. Celata, M. Cumo, and A. Mariani, “Burnout at Highly Subcooled Water Flow Boiling in Small Diameter Tubes,” Int. J. Heat Mass Transfer 36(5), 1269–1285 (1993).

    Article  Google Scholar 

  25. C. L. Vandervort, A. E. Bergles, and M. K. Jensen, “The Ultimate Limits of Forced Convective Subcooled Boiling Heat Transfer,” in RPI Interim Rep. HTL-9 DEFG02-89ER 14019, 1992.

  26. I. Mudawar and M. B. Bowers, “Ultra-High Critical Heat Flux (CHF) for Subcooled Water Flow Boiling — I: CHF DATA and Parametric Effects for Small Diameter Tubes,” Int. J. Heat Mass Transfer 42(8), 1405–1428 (1999).

    Article  Google Scholar 

  27. G. P. Celata, M. Cumo, F. Inasaka, et al., “Influence of Channel Diameter on Subcooled Flow Boiling at High Heat Fluxes,” Int. J. Heat Mass Transfer 36(13), 3407–3410 (1993).

    Article  Google Scholar 

  28. G. P. Celate, M. Cumo, and A. Mariani, “The Effect of the Tube Diameter on the Critical heat Flux in Subcooled Flow Boiling,” Int. J. Heat Mass Transfer 39(8), 1755–1757 (1996).

    Article  Google Scholar 

  29. G. P. Celata, M. Cumo, A. Mariani, et al., “Rationalization of Existing Mechanistic Models for the Prediction of Water Subcooled Flow Boiling Critical Heat Flux,” Int. J. Heat Mass Transfer 37(Suppl. 1), 1755–1757 (1994).

    Google Scholar 

  30. G. P. Celata, “Critical Heat Flux in Water Subcooled Flow Boiling: Experimentation an Modelling,” in Proc. 2nd European Thermal Science and 14th National Heat Transfer Conf., Pisa, Italy, 1996 (Edizioni ETC, 1996), Vol. 1, 27–40.

    Google Scholar 

  31. G. P. Celata, M. Cumo, and A. Mariani, “The Effect of Channel Diameter, Length, and Wall Thickness on the Critical Heat Flux in Subcooled Flow Boiling at High Heat Flux,” in Proc. European Two-Phase Flow Group Meeting, Grenoble, France, June 1996.

  32. Yu. A. Zeigarnik, A. I. Klimov, and I. V. Maslakova, “Ultimate Parameters for Cooling Systems Using Boiling of Highly Subcooled Water,” Teploenergetika, No. 12, 55–59 (1985).

  33. Y. Katto, “A Prediction Model of Subcooled Water Flow Boiling CHF for Pressure in the Range 0.1–20 MPa,” Int. J. Heat Mass Transfer 35(5), 1115–1123 (1992).

    Article  Google Scholar 

  34. G. P. Celata, M. Cumo, and A. Mariani, “Mechanistic Model for the Prediction of Water Subcooled Flow Boiling,” in Proc. European Two-Phase Flow Boiling Meeting, Piacenza, Italy, June 6–8, 1994, Paper G4.

  35. A. E. Bergles, J. G. Collier, J. M. Delhaye, et al., Two-Phase Flow and Heat Transfer in the Power and Process Industries (Hemisphere Publishing Corp., New York, 1981), pp. 226–255.

    Google Scholar 

  36. Y. Y. Hsu and R. W. Graham, “Transport Processes in Boiling and Two-Phase Systems,” Proc. American Nuclear Society, 217–232 (1986).

  37. G. P. Celata, “Recent Achievements in the Thermal Hydraulics of High Heat Flux Components in Fusion Reactors,” Exp. Thermal and Fluid Sci., No. 7, 177–192 (1993).

    Google Scholar 

  38. D. C. Groeneveld, L. K. H. Leung, F. J. Erbacher, et al., “An Improved Table-Up Method for Predicting Critical Heat Flux,” in Proc. NURETH-6. Sixth Int. Topical Meeting on Nuclear Reactor Thermal Hydraulics, 1993, Vol. 1, pp. 223–230.

  39. A. A. Avdeev and V. P. Pekhterev, “Pressure Drop under Forced Subcooled Water Flow,” Teploenergetika, No. 6, 49–52 (1985).

  40. V. E. Doroshchuk, Yu. A. Zeigarnik, P. L. Kirillov, et al., “Recommendations for Calculation of Heat Transfer Crisis under Boiling in Round Tubes,” Preprint No. 1–57 (Moscow, IVTAN, 1980).

    Google Scholar 

  41. D. C. Groeneveld, J. Q. Shan, A. Z Vasi, et al., “The 2005 CHF Look-up Table,” in Proc. NURETH-11. Eleventh Intern. Topical Meeting on Nuclear Reactor Thermal Hydraulics, Grenoble, France, 2005, Paper No 166.

  42. A. A. Abramyan and G. G. Bartolomei, “Experimental Study of Actual Void Fraction under High Heat Fluxes,” Teploenergetika, No. 11, 64–66 (1985).

  43. V. A. Vasilenko, Yu. A. Migrov, S. N. Volkova, et al., “Experience in Creating of the Thermohydraulic Computer Code of the New Generation KORS AR and Its Main Characteristics,” Teploenergetika, No. 11, 67–69 (2002) [Thermal Eng. 49 (11), 888–890 (2002)].

  44. RELAP5/MOD3, Code Manual, Vol. IV. Models and Correlations (NUREG/CR-5535-V4, Idaho, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.S. Solov’ev, S.L. Solov’ev, 2007, published in Teploenergetika.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solov’ev, D.S., Solov’ev, S.L. Boiling crisis under liquid flow in channels with a high mass flowrate and subcooling. Therm. Eng. 54, 204–209 (2007). https://doi.org/10.1134/S0040601507030068

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601507030068

Keywords

Navigation