Skip to main content
Log in

Simulating tornado-like enhancement of heat transfer for low-velocity motion of air in a rectangular channel with cavities. Part 1: Selection and justification of calculation methods

  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

Existing experimental data on the subject are briefly analyzed and the main objectives of calculation studies on the problem area are determined. Details of a calculation procedure are described, the choice of Menter’s shear stress transfer model is substantiated, and results are presented from testing a multiblock approach for numerically simulating hydrodynamics and heat transfer in low-velocity near-wall airflows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. F. Gortyshov and V. V. Olimpiev, Heat Exchangers with Enhanced Heat Transfer (Kazan Gos. Tekhn. Univ, Kazan, 1999) [in Russian].

    Google Scholar 

  2. A. V. Shchukin, A. P. Kozlov, R. S. Agachev, and Ya. P. Chudnovskii, Enhancement of Heat Transfer by Means of Spherical Cavities under the Effect of Disturbing Factors, Ed. by V. E. Alemasov (Kazan Gos. Tekhn. Univ, Kazan, 2003) [in Russian].

    Google Scholar 

  3. V. I. Terekhov and S. V. Kalinina, “Flow Structure and Heat Transfer for a Stream around a Single Spherical Cavity. State of the Question and Problems (a Review),” Teplofiz. Aeromekh. 9(4), 497–520 (2002).

    Google Scholar 

  4. G. I. Kiknadze, I. A. Gachechiladze, and V. V. Alekseev, Self-Organization of Tornado-Like Jets in Flows of Viscous Continuous Media and the Heat-Transfer Enhancement Accompanying This Phenomenon (Mosk. Energ. Inst., Moscow, 2005) [in Russian].

    Google Scholar 

  5. P. M. Ligrani, M. M. Oliveira and T. Blaskovitch, “Comparison of Heat Transfer Augmentation Techniques,” AIAA J. 41(3), 337–362 (2003).

    Article  Google Scholar 

  6. A. A. Khalatov, Heat Transfer and Hydrodynamics of Near-Surface Indents (Cavities) (Naukova Dumka, Kiev, 2005) [in Russian].

    Google Scholar 

  7. I. A. Belov, S. A. Isaev, and V. A. Korobkov, Problems and Methods Pertinent to Calculating Separated Flows of Incompressible Fluid (Sudostroenie, Leningrad, 1989) [in Russian].

    Google Scholar 

  8. Yu. A. Bystrov, S. A. Isaev, N. A. Kudryavtsev, and A. I. Leont’ev, Numerical Simulation of Vortex Enhancement of Heat Transfer in Tube Packs (Sudostroenie, St. Peterburg, 2005) [in Russian].

    Google Scholar 

  9. V. N. Afanasiev, Ya. P. Chudnovsky, S. A. Isaev, et al., “Measurement and Numerical Simulation of Vortex Turbulent Flow and Heat Transfer in Spherical Cavity,” in Proceedings of Fifth International Symposium on Refined Flow Modeling and Turbulent Measurement, Paris, 1993.

  10. S. A. Isaev, V. B. Kharchenko, and Ya. P. Chudnovskii, “Calculating Spatial Flow of Viscous Incompressible Fluid in the Vicinity of a Shallow Cavity on a Flat Surface,” Inzh. Fiz. Zh. 67(5, 6), 373–378 (1994).

    Google Scholar 

  11. S. A. Isaev and Ya. P. Chudnovskii, “A Numerical Investigation into Heat Transfer and Mechanisms of Vortex Dynamics for Flow around Spherical Cavities,” in Proceedings of the First Russian National Conference on Heat Transfer. Enhancement of Heat Transfer (Mosk. Energ. Inst., Moscow, 1994), Vol. 8, pp. 80–85.

    Google Scholar 

  12. S. A. Isaev, “Numerical Study of Vortex Mechanisms for Heat Transfer Intensification in Vicinity of the Surface with a Cave,” in Proceedings of International Symposium on Heat Transfer Enhancement in Power Machinery, Moscow, 1995, Part 2, pp. 153–156.

  13. V. V. Bungov, E. V. Dilevskaya, and S. A. Isaev, “Numerical Simulation of Steady Turbulent Flow and Heat Transfer in the Channel with Boundaries Covered by Numerous Caves,” in Proceedings of International Symposium on Heat Transfer Enhancement in Power Machinery, Moscow, 1995, Part 2, pp. 130–131.

  14. S. A. Isaev, A. I. Leont’ev, and A. E. Usachov, “A Numerical Study of a Vortex Mechanism for Enhancement of Heat Transfer in the Vicinity of a Surface with a Cavity,” in Proceedings of the Third International Forum in Minsk titled Heat-and-Mass Transfer MMF-96, Minsk, 1996, Vol. 1: Convective Heat-and-Mass Transfer, Part 1.

  15. S. A. Isaev, “Numerical Simulation of Vortex Dynamics for a Flow of Incompressible Fluid along a Wall with a Single Cavity,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gazov, No. 4, 184–185 (1997).

  16. S. A. Isaev, A. I. Leont’ev, and A. E. Usachov, “Numerical Simulation of the Mechanism for Vortex Enhancement of Heat-and-Mass Transfer Processes in the Vicinity of a Surface with a Cavity,” Inzh. Fiz. Zh. 71(3), 484–490 (1998).

    Google Scholar 

  17. S. A. Isaev, A. I. Leont’ev, A. E. Usachov, and D. P. Frolov, “Numerical Simulation of Laminar Spatial Flow of Viscous Incompressible Fluid around a Cavity. Vortex Dynamics and Heat Transfer,” Preprint No. 6 (Institute for High-Performance Calculations and Data-bases, St. Petersburg, 1997), pp. 22–24.

    Google Scholar 

  18. S. A. Isaev, P. A. Baranov, A. E. Usachov, and D. P. Frolov, “Numerical Identification of Two-and Three-Dimensional Organized Vortex Structures,” in Proceedings of 8th International Symposium on Flow Visualization, Sorrento, Italy, 1998, pp. 217.1–217.8.

  19. S. A. Isaev, P. A. Baranov, A. E. Usachov, and D. P. Frolov, “A Numerical Investigation into a Jet-Vortex Mechanism for Enhancement of Heat Transfer in the Vicinity of a Spherical Cavity on a Plane Washed by Flow of Incompressible Viscous Fluid Taking into Account the Asymmetry of Shape, Natural Convection, and Unsteady Processes, in Proceedings of the Second Russian National Conference on Heat Transfer Enhancement of Heat Transfer Radiant and Complex Heat Transfer (Mosk. Energ. Inst., 1998), Vol. 6, pp. 121–124.

    Google Scholar 

  20. S. A. Isaev, “Numerical Simulation of Spatial Separated Flows,” in Proceedings of the Twelfth Seminar School of Young Scientists and Specialists on the Problems of Gas Dynamics and Heat and Mass Transfer in Power Installations, Headed by Academician of Russian Academy of Sciences A. I. Leont’ev (Mosk. Energ. Inst., Moscow, 1999), pp. 17–20.

    Google Scholar 

  21. S. A. Isaev, A. I. Leont’ev, P. A. Baranov, and A. E. Usachov, “Bifurcation of Vortex Turbulent Flow and Enhancement of Heat Transfer in a Cavity,” Dokl. Ross. Akad. Nauk 373(5), 615–617 (2000).

    Google Scholar 

  22. S. V. Guvernuyk, A. S. Guzeyev, and S. A. Isaev, “Identification of Vortex Structures in Three-Dimensional Separated Flows (Numerical and Physical Experiments),” in Proceedings of the Ninth (Millenium) International Symposium on Flow Visualization, Edinburgh, 2000, pp. 116.1–116.5.

  23. S. A. Isaev, A. I. Leont’ev, P. A. Baranov, et al., “A Numerical Analysis of the Effect of Viscosity on Vortex Dynamics for Laminar Separated Flow around a Spherical Cavity on a Plane Taking into Account Its Asymmetry,” Inzh. Fiz. Zh. 74(2), 62–67 (2001).

    Google Scholar 

  24. S. A. Isaev, I. A. Pyshnyi, A. E. Usachov, and V. B. Kharchenko, “Verification of a Multiblock Computation Technology when Calculating Laminar and Turbulent Flows around a Spherical Cavity on a Channel Wall,” Inzh. Fiz. Zh. 75(5), 122–124 (2002).

    Google Scholar 

  25. S. A. Isaev, A. I. Leont’ev, P. A. Baranov, et al., “A Numerical Analysis of Vortex Enhancement of Heat Transfer in a Channel with a Pack of Deep Spherical Cavities on One of the Walls,” Dokl. Ross. Akad. Nauk 386(5), 621–623 (2002).

    Google Scholar 

  26. S. A. Isaev, A. I. Leontiev, and V. L. Zhdanov, “Simulation of Tornado-Like Heat Transfer at the Flow Passing a Relief with Dimples,” in Proceedings of the Twelfth International Heat-Transfer Conference Titled Heat Transfer 2002, Grenoble, 2002, Vol. 2, pp. 735–738.

    Google Scholar 

  27. R. Banker, M. Ya. Belen’kii, M. A. Gotovskii, et al., “An Experimental and Calculated Study of Hydrodynamics and Heat Transfer in a Flat Variable-Width Channel for the Cases of Flat and Intensified Surfaces,” in Proceedings of the Third Russian National Conference on Heat Transfer Enhancement of Heat Transfer Radiant and Complex Heat Transfer (Mosk. Energ. Inst., 2002), Vol. 6, pp. 37–40.

    Google Scholar 

  28. S. A. Isaev, A. I. Leont’ev, A. V. Mityakov, et al., “Local Coefficients for Heat Transfer on the Surface of an Oblong Cavity,” Proceedings of the Third Russian National Conference on Heat Transfer Enhancement of Heat Transfer Radiant and Complex Heat Transfer (Mosk. Energ. Inst., 2002), pp. 114–117.

  29. S. A. Isaev, A. I. Leont’ev, N. A. Kudryavtsev, and I. A. Pyshnyi, “The Influence the Variation of Vortex Structure with Increasing the Depth of a Spherical Cavity on the Wall of a Narrow Plane-Parallel Channel Has on a Stepped Change in Heat Transfer,” Izv. Ross. Akad Nauk, Teplofiz. Vys. Temp. 41(2), 268–272 (3003).

    Google Scholar 

  30. S. A. Isaev and A. I. Leont’ev, “Numerical Simulation of Vortex Enhancement of Heat Transfer for Turbulent Flow around a Spherical Cavity on the Wall of a Narrow Channel,” Izv. Ross. Akad. Nauk, Teplofiz. Vys. Temp. 41(5), 755–770 (2003).

    Google Scholar 

  31. S. A. Isaev, A. I. Leont’ev, A. V. Mityakov, and I. A. Pyshnyi, “Enhancement of Tornado-Like Turbulent Heat Transfer in Asymmetrical Cavities on a Flat Wall,” Inzh. Fiz. Zh. 76(2), 31–34 (2003).

    Google Scholar 

  32. S. A. Isaev, P. A. Baranov, N. A. Kudryavtsev, and A. E. Usachov, “An Analysis of Vortex Heat Transfer for Flow around a Ditch on a Plane Using Multiblock Computation Technologies and Different Semiempirical Turbulence Models,” Inzh. Fiz. Zh. 77(6), 152–161 (2004).

    Google Scholar 

  33. S. A. Isaev, A. I. Leont’ev, V. L. Zhadanov, et al., “Tornado-Like Enhancement of Heat Transfer on Dimpled Profiles,” in Proceedings of the Fifth Minsk International Forum on Heat and Mass Transfer (Lykov ITMO, National Academy of Sciences of Belarus, 2004), Vol. 1, pp. 83–84.

    Google Scholar 

  34. S. A. Isaev, A. I. Leont’ev, and I. A. Pyshnyi, “Vortex Enhancement of Heat Transfer for Flow around Ditch and Cavity Profiles (a Numerical Simulation),” in Proceedings of the 27th Siberian Thermophysical Seminar Devoted to the 90th Anniversary of Academician S.S. Kutateladze (ITF, Siberian Division, Russian Academy of Sciences, Novosibirsk, 2004).

    Google Scholar 

  35. S. A. Isaev, A. I. Leont’ev, and N. A. Kudryavtsev, “Numerical Simulation of Hydrodynamics and Heat Transfer for a Ditch on a Flat Wall Flowed Over by Turbulent Transverse Current,” Izv. Ross. Akad. Nauk, Teplofiz. Vys. Temp. 43(1), 46–55 (2005).

    Google Scholar 

  36. S. A. Isaev, A. I. Leont’ev, G. I. Kiknadze, et al., “A Comparative Analysis of Vortex Heat Transfer for a Spherical Cavity and Two-Dimensional Ditch on a Flat Wall Flowed Over by Turbulent Current,” Inzh. Fiz. Zh. 78(4), 117–128 (2005).

    Google Scholar 

  37. S. A. Isaev and A. I. Leont’ev, “Simulation of Tornado-Like Enhancement of Heat Transfer: State and Future Prospects,” in Proceedings of the Second Russian Conference on Heat Transfer and Hydrodynamics in Swirl Flows (Mosk. Energ. Inst., Moscow, 2005).

    Google Scholar 

  38. G. A. Dreitser, S. A. Isaev, and I. E. Lobanov, “Calculation of Convective Heat Transfer in a Tube with Vortex Generators Periodically Arranged on Its Surface,” Izv. Ross. Akad. Nauk, Teplofiz. Vys. Temp. 43(2), 223–230 (2005).

    Google Scholar 

  39. E. F. Kalinin, G. A. Dreitser, I. Z. Kopp, and A. S. Myakochin, Efficient Heat-Transfer Surfaces (Energoatomizdat, Moscow, 1998) [in Russian].

    Google Scholar 

  40. Y.-L. Lin, T. I.-P. Shih, and M. K. Chyu, “Computations of Flow and Heat Transfer in a Channel with Rows of Hemispherical Cavities,” ASME Paper 99-GT-263, 6 (1999).

  41. M. E. Kithcart and D. E. Klett, “Simulation of Turbulent Boundary Flow over Dimple Roughness Elements: In-Line Configuration,” in Proceedings of the 35th National Heat Transfer Conference, Anaheim, California (ASME, New York, 2001), pp. 375–384.

    Google Scholar 

  42. Z. Wang, K. S. Yeo, and B. S. Khoo, “Numerical Simulation of Laminar Channel Flow over Dimpled Surface,” AIAA Paper No. 2003-3964, 1192–1202 (2003).

  43. J. Park, P. R. Desam, and P. M. Ligrani, “Numerical Prediction of Flow Structure above a Dimpled Surface in a Channel,” Numerical Heat Transfer 45(A), 1–20 (2004).

    Google Scholar 

  44. Z. Wang, K. S. Yeo, and B. S. Khoo, “DNS of Low Reynolds Number Turbulent Flow in Dimpled Channel,” in Proceedings of the Tenth European Turbulence Conference, Barselona, 2004, H. I. Anderson and P.-A. Krogstag, Eds.

  45. J. Park and P. M. Ligrani, “Numerical Predictions of Heat Transfer and Fluid Flow Characteristics for Seven Different Dimpled Surfaces in a Channel,” Numerical Heat Transfer 47(A), 1–24 (2005).

    Google Scholar 

  46. D. Laufer, R. Liebe, and B. Weigard, “A Study of Local Heat Transfer Enhancement in a Rectangular Dimpled Channel with a Large Aspect Ratio,” in Proceedings of GT2005 ASME Turbo Expo 2005: Power for Land, Sea, and Air, 2005, No. GT2005-68089, p. 9.

  47. F. R. Menter, “Zonal Two-Equation k-ω Turbulence Models for Aerodynamic Flows,” AIAA Paper No. 93-2906, 21 (2005).

  48. F. R. Menter, M. Kuntz, and R. Langtry, “Ten Years of Industrial Experience with the SST Turbulence Model,” in Turbulence, Heat and Mass Transfer 4, K. Hajalic, Y. Nogano, and M. Tummers, Eds. (Begell House, Inc., 2003), p. 8.

  49. V. Yu. Mityakov, The Capacities of Bismuth-Based Gradient Heat-Flux Sensors in a Thermal Engineering Experiment, Doctoral Dissertation in Technical Sciences (SPb Gos. Politekhn. Univ, St. Petersburg, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.A. Isaev, A.I. Leont’ev, P.A. Baranov, 2007, published in Teploenergetika.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaev, S.A., Leont’ev, A.I. & Baranov, P.A. Simulating tornado-like enhancement of heat transfer for low-velocity motion of air in a rectangular channel with cavities. Part 1: Selection and justification of calculation methods. Therm. Eng. 54, 193–199 (2007). https://doi.org/10.1134/S0040601507030044

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601507030044

Keywords

Navigation