Skip to main content
Log in

Heat transfer under nucleate boiling: Possibilities and limitations of a theoretical analysis

  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

Analysis of different methods of studying nucleate boiling of liquids and results of numerical simulation of primary processes that determine its regularities are presented. The important role of approximate theories, which include the most significant aspects of the boiling process, is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. I. Pioro, W. Rohsenow, and S. S. Doeffler, “Nucleate Pool-Boiling Heat Transfer. I: Review of Parametric Effects of Boiling Surface,” Int. J. Heat Mass Transfer 47, 5033–5044 (2004).

    Article  MATH  Google Scholar 

  2. I. I. Pioro, W. Rohsenow, and S. S. Doeffler, “Nucleate Pool Boiling Heat Transfer.: Assessment of Prediction Methods,” Int. J. Heat Mass Transfer 47, 5045–5057 (2004).

    Article  MATH  Google Scholar 

  3. F. D. Moore and R. B. Mesler, “The Measurement of Rapid Surface Fluctuations During Nucleate Boiling of Water,” AIChE Journal, No. 7, 620–624 (1961).

    Google Scholar 

  4. R. F. Gaertner, “Photographic Study of Nucleate Pool Boiling on a Horizontal Surface,” Trans. of ASME. J. Heat Transfer 87, 17–29 (1965).

    Google Scholar 

  5. D. Kirby and J. Westwater, “Bubble and Vapor Behavior on Heated Horizontal Plate During Pool Boiling Near Burnout,” Chem. Eng. Progr. Symp. Series 61, 238–248 (1965).

    Google Scholar 

  6. H. H. Jawurek, “Simultaneous Determination of Microlayer and Bubble Growth in Nucleate Boiling,” Int. J. Heat Mass Transfer 12, 843–848 (1969).

    Article  Google Scholar 

  7. M. G. Cooper and A. J. P. Lloyd, “The Microlayer in Pool Boiling,” Int. J. Heat Mass Transfer 12, 895–913 (1969).

    Article  Google Scholar 

  8. D. B. R. Kenning and Y. Yan, “Pool Boiling Heat Transfer on a Thin Plate: Features Revealed by Liquid Crystal Thermography,” Int. J. Heat Mass Transfer 39, 3117–3137 (1996).

    Article  Google Scholar 

  9. D. B. R. Kenning, “Experimental Methods: Looking Closely at Bubble Nucleation,” Multiphase Science and Technology 13, 1–33 (2001).

    Google Scholar 

  10. H. Xing and D. B. R. Kenning, “Identification of Bubble Nucleation Sites,” in Proc. of 8th UK Nat. Heat Transfer Conf., Oxford, UK, 9–10 Sept., 2003.

  11. D. Gorenflo, A. Luke, and E. Danger, “Interactions Between Heat Transfer and Bubble Formation in Nucleate Boiling,” in Proc. 11th Int. Heat transfer Conf., Kyongui, Corea, 1998, Vol. 1, pp. 149–174.

  12. D. Gorenflo, U. Chandra, S. Kotthof, and A. Luke, “Influence of Thermophysical Properties on Pool Boiling Heat Transfer,” in Proc. of 8th UK Nat. Heat Transfer Conf., Oxford, UK, 9–10 Sept., 2003.

  13. A. Luke, “Active and Potential Nucleation Sites on Different Structured Surfaces,” in Proc. of 8th UK Nat. Heat Transfer Conf., Oxford, UK, 9–10 Sept., 2003.

  14. R. Hohl, H. Auracher, J. Blum, and W. Marquardt, “Characteristics of Liquid-Vapor Fluctuations in Pool Boiling at Small Distances from the Heater,” in Proc. 11th Int. Heat transfer Conf., Kyongui, Corea, 1998, Vol. 2, pp. 383–388.

  15. R. Hohl, J. Blum, M. Buchholz, et al., “Model-Based Experimental Analysis of Pool Boiling Heat Transfer with Controlled Wall Temperature Transients,” Int. J. Heat Mass Transfer 44, 2225–2238 (2001).

    Article  Google Scholar 

  16. M. Buchholz and H. Auracher, “Microsensors to Study Temperature Fluctuations Near the Heating Surface in Pool Boiling and Two-Phase Characteristics,” in Proc. of 8th UK Nat. Heat Transfer Conf., Oxford, UK, 9–10 Sept., 2003.

  17. T. G. Theofanous, T. N. Dinh, J. P. Tu, and A. T. Dinh, “The Boiling Crisis Phenomenon-Part I: Nucleation and Nucleate Boiling Heat Transfer,” Exp. Thermal and Fluid Science 26, 775–792 (2002).

    Article  Google Scholar 

  18. T. G. Theofanous, T. N. Dinh, J. P. Tu, and A. T. Dinh, “The Boiling Crisis Phenomenon-Part II: Dryout Dynamics and Burnout,” Exp. Thermal and Fluid Science 26, 793–810 (2002).

    Article  Google Scholar 

  19. J. Fujita and Q. Bai, “Numerical Simulation of the Growth for an Isolated Bubble in Nucleate Boiling,” in Proc. 11th Int. Heat transfer Conf., Kyongui, Corea, 1998, Vol. 2, pp. 437–442.

  20. Y. Takata, H. Shirakawa, T. Kuroki, and T. Ito, “Numerical Analysis of Single Bubble Departure from a Heated Surface,” in Proc. 11th Int. Heat transfer Conf., Kyongui, Corea, 1998, Vol. 4, pp. 355–360.

  21. G. Son and V. K. Dhir, “Numerical Simulation of a Single Bubble During Partial Nucleate Boiling on a Horizontal Surface,” in Proc. 11th Int. Heat transfer Conf., Kyongui, Corea, 1998, Vol. 2, pp. 533–538.

  22. G. Son, V. K. Dhir, and N. Ramanujapy, “Dynamics and Heat Transfer Associated with a Single Bubble During Nucleate Boiling on a Horizontal Surface,” Trans. ASME. J. Heat Transfer 121, 623–631 (1999).

    Google Scholar 

  23. P. Genske and K. Stephan, “Numerical Simulation of Heat Transfer During Growth of Vapor Bubbles in Nucleate Boiling,” in Proc. 12th IHTC, Grenoble, France, 2002.

  24. T. Kunugi, N. Saito, Y. Fujita, and A. Serizawa, “Direct Numerical Simulation in Pool and Forced Convective Flow Boiling Phenomena,” in Proc. 12th IHTC, Grenoble, France, 2002.

  25. V. K. Dhir, “Boiling under Microgravity Conditions,” in Proc. 12th IHTC, Grenoble, France, 2002.

  26. P. Stephan, “Microscale Evaporative Heat Transfer: Modelling and Experimental Validation,” in Proc. 12th IHTC, Grenoble, France, 2002.

  27. V. K. Dhir, “Nucleate Boiling Under Reduced Gravity conditions,” in Proc. VI Minsk Int. Seminar “Heat Pipes, Heat Pumps, Refrigerators,” Minsk, Belarus, 2005, pp. 63–73.

  28. M. Choji, “Studies of Boiling Chaos: a Review,” Int. J. Heat Mass Transfer 47, 1105–1128 (2004).

    Article  Google Scholar 

  29. D. A. Labuntsov, Physical Fundamentals of Power Engineering. Selected Papers on Heat Transfer, Hydrodynamics, and Thermodynamics (MEI Publishing, Moscow, 2000) [in Russian].

    Google Scholar 

  30. T. G. Theofanous, “Multiscale Treatment: a Paradigm Shift for Addressing Complexity in Multiphase Flows. Multiphase Flow and Heat Transfer,” in Proc. of 4th Int. Symp., China, Aug. 22–24, 1999.

  31. P. Stephan and J. Hammer, “A New Model for Nucleate Boiling Heat Transfer,” Wärme und Stoffübertragung 30, 119–125 (1994).

    Google Scholar 

  32. R. Winterton, “Extension of a Pool Boiling Based Correlation to Flow Boiling of Mixtures,” in Proc. Pool Boiling 2. Eurotherm Seminar No. 48, Paderborn, Germany, 1996, Ed. by D. Gorenflo, D. B. R. Kenning, and Ch. Marvilett (Edizioni ETS, Pisa, 1996), pp. 173–180.

    Google Scholar 

  33. K. Stephan and M. Abdesalam, “Heat Transfer Correlation for Natural Convection Boiling,” Int. J. Heat Mass Transfer 23, 73–87 (1980).

    Article  Google Scholar 

  34. K. Stephan and H. Auracher, “Correlations of Nucleate Boiling Heat Transfer in Forced Convection,” Int. J. Heat Mass Transfer 24, 99–107 (1981).

    Article  Google Scholar 

  35. M. G. Cooper, “Saturation Nucleate Pool Boiling — a Simple Correlation,” in Proc. 1st U.K National Conf. on Heat Transfer, U.K., 1984, pp. 785–793.

  36. V. M. Borishanskii, “Assessment of the Effect of Pressure on Heat Transfer and Critical Flux Under Boiling Based on Thermodynamic Similarity Theory,” in Problems of Heat Transfer and Hydrodynamics in Two-Phase Flows (Gosenergoizdat, Leningrad, 1961) [in Russian].

    Google Scholar 

  37. G. F. Hewitt, G. I. Shires, and T. R. Bott, Process Heat Transfer (Begell House, 1994).

  38. V. V. Yagov, The Scientific Legacy of D. A. Labuntsov and Modern Ideas on the Nucleate Boiling Process,” Teploenergetika No. 3, 2–10 (1995) [Therm. Engineering 42 (5), 181–189 (1995)].

  39. V. A. Grigor’ev, Yu. M. Pavlov, and E. V. Ametistov, Boiling of Cryogenic Liquids (Energiya, Moscow, 1977) [in Russian].

    Google Scholar 

  40. E. V. Ametistov, V. V. Klimenko, and Yu. M. Pavlov, Boiling of Cryogenic Liquids (Energoatomizdat, Moscow, 1995) [in Russian].

    Google Scholar 

  41. V. V. Yagov, “Heat Transfer under Developed Nucleate Boiling,” Teploenergetika, No. 2, 4–9 (1988).

  42. V. V. Yagov, “The Principal Mechanism for Boiling Contribution in Flow Boiling Heat Transfer,” in Convective Flow Boiling (Taylor & Francis, 1995), J. C. Chen, Ed., pp. 175–180.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Yagov, 2007, published in Teploenergetika.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yagov, V.V. Heat transfer under nucleate boiling: Possibilities and limitations of a theoretical analysis. Therm. Eng. 54, 173–179 (2007). https://doi.org/10.1134/S0040601507030019

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601507030019

Keywords

Navigation