Skip to main content
Log in

Computational Explanation of the Photovoltaic Cells Properties of the PCBM and PC71BM Derivatives using the Density Functional Theory

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Organic photovoltaic cells are electronic devices that convert sunlight into electricity. To this end, the number of studies on organic photovoltaic cells (OVCs) is growing, and this trend is expected to continue. Computational studies are still needed to verify and prove the capability of CVOs, specifically the nanometer molecule PCBM, based on successful experimental results. In this paper, we present a theoretical and computational investigation of PCBM and PC71BM derivatives using the DFT method. On this basis, we employ independent and time-dependent density theories. HOMO, LUMO and GAPH-L energies, ionization potentials and electronic affinity are determined and found to be in agreement with experiments. Using DFT theory based on B3LYP and M062X methods with bases 6-31G (d,p) and 6-311G (d), calculations show that the most efficient acceptors are presented in the group of PC71BM derivatives and are in substantial agreement with experiments. The geometries of the structures are optimized by Gaussian 09.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. McGehee, M. D., Gowrishankar, V., Goh, C., Srinivasan, B., and Rowell, M., Ordered Bulk Heterojunction Photovoltaic Cells, 2006.

  2. Aberle, A.G., Thin-film solar cells, Thin Solid Films, 2009, vol. 517, no. 17, pp. 4706–4710. https://doi.org/10.1016/j.tsf.2009.03.056

    Article  ADS  CAS  Google Scholar 

  3. Lechner, P. and Schade, H., Photovoltaic thin-film technology based on hydrogenated amorphous silicon, Prog. Photovoltaics, 2002, vol. 10, no. 2, pp. 85–97. https://doi.org/10.1002/pip.412

    Article  CAS  Google Scholar 

  4. Wu, C.-H. and Williams, R., Limiting efficiencies for multiple energy-gap quantum devices, J. Appl. Phys., 1983, vol. 54, no. 11, pp. 6721–6724. https://doi.org/10.1063/1.331859

    Article  ADS  CAS  Google Scholar 

  5. Allard, S., Forster, M., Souharce, B., Thiem, H., and Scherf, U., Organic semiconductors for solution-processable field-effect transistors (OFETs), Angew. Chem., Int. Ed., 2008, vol. 47, no. 22, pp. 4070–4098. https://doi.org/10.1002/anie.200701920

    Article  CAS  Google Scholar 

  6. Jin, X., Gao, P., Wang, D., Hu, X., and Chen, G.Z., Electrochemical preparation of silicon and its alloys from solid oxides in molten calcium chloride, Angew. Chem., Int. Ed., 2004, vol. 43, no. 6, pp. 733–736. https://doi.org/10.1002/anie.200352786

    Article  CAS  Google Scholar 

  7. Ong, B.S., Wu, Y., Li, Y., Liu, P., and Pan, H., 2008, Thiophene polymer semiconductors for organic thin-film transistors, Chem.–Eur. J., 2008, vol. 14, no. 16, pp. 4766–4778. https://doi.org/10.1002/chem.200701717

    Article  CAS  PubMed  Google Scholar 

  8. Ma, W., Yang, C., Gong, X., Lee, K., and Heeger, A.J., Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology, Adv. Funct. Mater., 2005, vol. 15, no. 10, pp. 1617–1622. https://doi.org/10.1002/adfm.200500211

    Article  CAS  Google Scholar 

  9. Chen, H.-Y., Hou, J., Zhang, S., Liang, Y., Yang, G., Yang, Y., Yu, L., Wu, Y., and Li, G., Polymer solar cells with enhanced open-circuit voltage and efficiency, Nat. Photonics, 2009, vol. 3, no. 11, pp. 649–653. https://doi.org/10.1038/nphoton.2009.192

    Article  ADS  CAS  Google Scholar 

  10. Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., and Yang, Y., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nat. Mater., 2005, vol. 4, no. 11, pp. 864–868. https://doi.org/10.1038/nmat1500

    Article  ADS  CAS  Google Scholar 

  11. Chen, L.-M., Hong, Z., Li, G., and Yang, Y., Recent progress in polymer solar cells: Manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells, Adv. Mater., 2009, vol. 21, nos. 14–15, pp. 1434–1449. https://doi.org/10.1002/adma.200802854

  12. Günes, S., Neugebauer, H., and Sariciftci, N.S., Conjugated polymer-based organic solar cells, Chem. Rev., 2007, vol. 107, no. 4, pp. 1324–1338. https://doi.org/10.1021/cr050149z

    Article  CAS  PubMed  Google Scholar 

  13. Jana, A.K., Solar cells based on dyes, J. Photochem. Photobiol., A, 2000, vol. 132, nos. 1–2, pp. 1–17. https://doi.org/10.1016/S1010-6030(99)00251-8

  14. Thompson, B.C. and Fréchet, J.M.J., Polymer–fullerene composite solar cells, Angew. Chem., Int. Ed., 2008, vol. 47, no. 1, pp. 58–77. doi.org/https://doi.org/10.1002/anie.200702506

    Article  CAS  Google Scholar 

  15. Kim, J.Y., Kim, S.H., Lee, H.-H., Lee, K., Ma, W., Gong, X., and Heeger, A.J., New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer, Adv. Mater., 2006, vol. 18, no. 5, pp. 572–576. https://doi.org/10.1002/adma.200501825

    Article  CAS  Google Scholar 

  16. Roncali, J., Molecular engineering of the band gap of π-conjugated systems: Facing technological applications, Macromol. Rapid Commun., 2007, vol. 28, no. 17, pp. 1761–1775. https://doi.org/10.1002/marc.200700345

    Article  CAS  Google Scholar 

  17. Mühlbacher, D., Scharber, M., Morana, M., Zhu, Z., Waller, D., Gaudiana, R., and Brabec, C., High photovoltaic performance of a low-bandgap polymer, Adv. Mater., 2006, vol. 18, no. 21, pp. 2884–2889. https://doi.org/10.1002/adma.200600160

    Article  Google Scholar 

  18. Woo, C.H., Thompson, B.C., Kim, B.J., Toney, M.F., and Fréchet, J.M.J., The influence of poly(3-hexylthiophene) regioregularity on fullerene-composite solar cell performance, J. Am. Chem. Soc., 2008, vol. 130, no. 48, pp. 16324–16329. https://doi.org/10.1021/ja806493n

    Article  CAS  PubMed  Google Scholar 

  19. Blouin, N., Michaud, A., Gendron, D., Wakim, S., Blair, E., Neagu-Plesu, R., Belletête, M., Durocher, G., Tao, Y., and Leclerc, M., Toward a rational design of poly(2,7-carbazole) derivatives for solar cells, J. Am. Chem. Soc., 2008, vol. 130, no. 2, pp. 732–742. https://doi.org/10.1021/ja0771989

    Article  CAS  PubMed  Google Scholar 

  20. Mack, J. and Kobayashi, N., Low symmetry phthalocyanines and their analogues, Chem. Rev., 2011, vol. 111, no. 2, pp. 281–321. https://doi.org/10.1021/cr9003049

    Article  CAS  PubMed  Google Scholar 

  21. Campetella, M., Maschietto, F., Frisch, M.J., Scalmani, G., Ciofini, I., and Adamo, C., Charge transfer excitations in TDDFT: A ghost-hunter index, J. Comput. Chem., 2017, vol. 38, no. 25, pp. 2151–2156. https://doi.org/10.1002/jcc.24862

    Article  CAS  PubMed  Google Scholar 

  22. M.J. Frisch, G.W. Trucks, H.B.  Schlegel, G.E. Scuseria, M.A. Robb, J.R Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A.Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M.  Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O.Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09 Revision A.02) Wallingford, CT: Gaussian Inc., 2016.

  23. Dennington, R., Keith, T., and Millam, J., GaussView Version, 5.0.8, Shawnee Mission, KS: Semichem Inc., 2009.

    Google Scholar 

  24. Parr, R.G., Density functional theory of atoms and molecules, in Horizons of Quantum Chemistry, Fukui, K. and Pullman, B., Eds., Dordrecht: Springer, 1980, vol. 3, pp. 5–15. https://doi.org/10.1007/978-94-009-9027-2_2

    Book  Google Scholar 

  25. Domingo, L.R. and Pérez, P., The nucleophilicity N index in organic chemistry, Org. Biomol. Chem., 2011, vol. 9, no. 20, pp. 7168–7175. https://doi.org/10.1039/C1OB05856H

    Article  CAS  PubMed  Google Scholar 

  26. Kohn, W. and Sham, L.J., Self-consistent equations including exchange and correlation effects, Phys. Rev., 1965, vol. 140, no. 4A, pp. A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133

    Article  ADS  MathSciNet  Google Scholar 

  27. Contreras, R.R., Fuentealba, P., Galván, M., and Pérez, P., A direct evaluation of regional Fukui functions in molecules, Chem. Phys. Lett., 1999, vol. 304, no. 5, pp. 405–413. https://doi.org/10.1016/S0009-2614(99)00325-5

    Article  ADS  CAS  Google Scholar 

  28. Parr, R.G., Szentpály, L.V., and Liu, S., Electrophilicity index, J. Am. Chem., Soc., 1999, vol. 121, no. 9, pp. 1922–1924. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  29. Ahmed, S. and Kalita, D.J., Charge transport in isoindigo-dithiophenepyrrole based D-A type oligomers: A DFT/TD-DFT study for the fabrication of fullerene-free organic solar cells, J. Chem. Phys., 2018, vol. 149, no. 23, article no. 234906. https://doi.org/10.1063/1.5055306

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Sahu, H. and Panda, A.N., Computational investigation of charge injection and transport properties of a series of thiophene–pyrrole based oligo-azomethines, Phys. Chem. Chem. Phys., 2014, vol. 16, no. 18, pp. 8563–8574. https://doi.org/10.1039/C3CP55243H

    Article  CAS  PubMed  Google Scholar 

  31. Hutchison, G.R., Ratner, M.A., and Marks, T.J., Hopping transport in conductive heterocyclic oligomers:  Reorganization energies and substituent effects, J. Am. Chem. Soc., 2005, vol. 127, no. 7, pp. 2339–2350. https://doi.org/10.1021/ja0461421

    Article  CAS  PubMed  Google Scholar 

  32. Chai, S., Wen, S.-H., Huang, J.-D., and Han, K.-L., Density functional theory study on electron and hole transport properties of organic pentacene derivatives with electron-withdrawing substituent, J. Comput. Chem., 2011, vol. 32, no. 15, pp. 3218–3225. https://doi.org/10.1002/jcc.21904

    Article  CAS  PubMed  Google Scholar 

  33. Cias, P., Slugovc, C., and Gescheidt, G., Hole transport in triphenylamine based OLED devices: From theoretical modeling to properties prediction, J. Phys. Chem. A, 2011, vol. 115, no. 50, pp. 14519–14525. https://doi.org/10.1021/jp207585j

    Article  CAS  PubMed  Google Scholar 

  34. Moral, M., Garzón, A., García, G., Granadino-Roldán, J.M., and Fernández-Gómez, M., DFT study of the ambipolar character of polymers on the basis of s-tetrazine and aryl rings, J. Phys. Chem. C, 2015, vol. 119, no. 9, pp. 4588–4599. https://doi.org/10.1021/jp5120948

    Article  CAS  Google Scholar 

  35. Fu, L.-L., Geng, H., Wang, G., Duan, Y.-A., Geng, Y., Peng, Q., Zhu, R., Xiao, T., Wang, W., and Liao, Y., Effect of electron-withdrawing terminal group on BDT-based donor materials for organic solar cells: A theoretical investigation, Theor. Chem. Acc., 2018, vol. 137, no. 5, article no. 63. https://doi.org/10.1007/s00214-018-2242-z

    Article  CAS  Google Scholar 

  36. Dutta, R. and Kalita, D.J., Charge injection and hopping transport in bridged-dithiophene-triazole-bridged-dithiophene (DT-Tr-DT) conducting oligomers: A DFT approach, Comput. Theor. Chem., 2018, vol. 1132, pp. 42–49. https://doi.org/10.1016/j.comptc.2018.04.006

    Article  CAS  Google Scholar 

  37. Castet, F., D’Avino, G., Muccioli, L., Cornil, J., and Beljonne, D., Charge separation energetics at organic heterojunctions: On the role of structural and electrostatic disorder, Phys. Chem. Chem. Phys., 2014, vol. 16, no. 38, pp. 20279–20290. https://doi.org/10.1039/C4CP01872A

    Article  CAS  PubMed  Google Scholar 

  38. Unconventional Thin Film Photovoltaics (Energy and Environment Series), Como, E.D., Angelis, F.D., Snaith, H., and Walker, A., Eds., Cambridge: RSC, 2016, vol. 16.

    Google Scholar 

  39. D’Avino, G., Olivier, Y., Muccioli, L., and Beljonne, D., Do charges delocalize over multiple molecules in fullerene derivatives?, J. Mater. Chem. C, 2016, vol. 4, no. 17, pp. 3747–3756. https://doi.org/10.1039/C5TC03283K

    Article  CAS  Google Scholar 

  40. D’Avino, G., Muccioli, L., Olivier, Y., and Beljonne, D., Charge separation and recombination at polymer–fullerene heterojunctions: Delocalization and hybridization effects, J. Phys. Chem. Lett., 2016, vol. 7, no. 3, pp. 536–540. https://doi.org/10.1021/acs.jpclett.5b02680

    Article  CAS  PubMed  Google Scholar 

  41. Karsten, B.P., Bijleveld, J.C., Viani, L., Cornil, J., Gierschner, J., and Janssen, R.A.J., Electronic structure of small band gap oligomers based on cyclopentadithiophenes and acceptor units, J. Mater. Chem., 2009, vol. 19, no. 30, pp. 5343–5350. https://doi.org/10.1039/B901374A

    Article  CAS  Google Scholar 

  42. Karsten, B.P., Viani, L., Gierschner, J., Cornil, J., and Janssen, R.A.J., On the origin of small band gaps in alternating thiophene–thienopyrazine pligomers, J. Phys. Chem. A, 2009, vol. 113, no. 38, pp. 10343–10350. https://doi.org/10.1021/jp9050148

    Article  CAS  PubMed  Google Scholar 

  43. Dhar, J., Mukhopadhay, T., Yaacobi-Gross, N., Anthopoulos, T.D., Salzner, U., Swaraj, S., and Patil, S., Effect of chalcogens on electronic and photophysical properties of vinylene-based diketopyrrolopyrrole copolymers, J. Phys. Chem. B, 2015, vol. 119, no. 34, pp. 11307–11316. https://doi.org/10.1021/acs.jpcb.5b03145

    Article  CAS  PubMed  Google Scholar 

  44. Wang, Y., Masunaga, H., Hikima, T., Matsumoto, H., Mori, T., and Michinobu, T., New semiconducting polymers based on benzobisthiadiazole analogues: Tuning of charge polarity in thin film transistors via heteroatom substitution, Macromolecules, 2015, vol. 48, no. 12, pp. 4012–4023. https://doi.org/10.1021/acs.macromol.5b00802

    Article  ADS  CAS  Google Scholar 

  45. Dykstra, T.E., Hennebicq, E., Beljonne, D., Gierschner, J., Claudio, G., Bittner, E.R., Knoester, J., and Scholes, G.D., Conformational disorder and ultrafast exciton relaxation in PPV-family conjugated polymers, J. Phys. Chem. B, 2009, vol. 113, no. 3, pp. 656–667. https://doi.org/10.1021/jp807249b

    Article  CAS  PubMed  Google Scholar 

  46. Kooistra, F.B., Knol, J., Kastenberg, F., Popescu, L.M., Verhees, W.J.H., Kroon, J.M., and Hummelen, J.C., Increasing the open circuit voltage of bulk-heterojunction solar cells by raising the LUMO level of the acceptor, Org. Lett., 2007, vol. 9, no. 4, pp. 551–554. https://doi.org/10.1021/ol062666p

    Article  CAS  PubMed  Google Scholar 

  47. Wang, E., Wang, L., Lan, L., Luo, C., Zhuang, W., Peng, J., and Cao, Y., High-performance polymer heterojunction solar cells of a polysilafluorene derivative, Appl. Phys. Lett., 2008, vol. 92, no. 3, article no. 033307. https://doi.org/10.1063/1.2836266

    Article  ADS  CAS  Google Scholar 

  48. Lee, J.Y., Heo, S.W., Choi, H., Kwon, Y.J., Haw, J.R., and Moon, D. K., Synthesis and characterization of 2,1,3-benzothiadiazole-thieno[3,2-b]thiophene-based charge transferred-type polymers for photovoltaic application, Sol. Energy Mater. Sol. Cells, 2009, vol. 93, no. 11, pp. 1932–1938. https://doi.org/10.1016/j.solmat.2009.07.006

    Article  CAS  Google Scholar 

  49. Park, S.H., Roy, A., Beaupré, S., Cho, S., Coates, N., Moon, J.S., Moses, D., Leclerc, M., Lee, K., and Heeger, A.J., Bulk heterojunction solar cells with internal quantum efficiency approaching 100%, Nat. Photonics, 2009, vol. 3, no. 5, pp. 297–302. https://doi.org/10.1038/nphoton.2009.69

    Article  ADS  CAS  Google Scholar 

  50. Qin, R., Li, W., Li, C., Du, C., Veit, C., Schleiermacher, H.-F., Andersson, M., Bo, Z., Liu, Z., Inganäs, O., Wuerfel, U., and Zhang, F., A planar copolymer for high efficiency polymer solar cells, J. Am. Chem. Soc., 2009, vol. 131, no. 41, pp. 14612–14613. https://doi.org/10.1021/ja9057986

    Article  CAS  PubMed  Google Scholar 

  51. Liang, Y., Xu, Z., Xia, J., Tsai, S.-T., Wu, Y., Li, G., Ray, C., and Yu, L., For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%, Adv. Mater., 2010, vol. 22, no. 20, pp. E135–E138. https://doi.org/10.1002/adma.200903528

    Article  CAS  PubMed  Google Scholar 

  52. Lee, J.-Y., Kim, S.-H., Song, I.-S., and Moon, D.-K., Efficient donor–acceptor type polymer semiconductors with well-balanced energy levels and enhanced open circuit voltage properties for use in organic photovoltaics, J. Mater. Chem., 2011, vol. 21, no. 41, pp. 16480–16487. https://doi.org/10.1039/C1JM12145F

    Article  CAS  Google Scholar 

  53. Song, H.-J., Kim, D.-H., Lee, E.-J., Heo, S.-W., Lee, J.-Y., and Moon, D.-K., Conjugated polymer consisting of quinacridone and benzothiadiazole as donor materials for organic photovoltaics: Coplanar property of polymer backbone, Macromolecules, 2012, vol. 45, no. 19, pp. 7815–7822. https://doi.org/10.1021/ma301466m

    Article  ADS  CAS  Google Scholar 

  54. Liang, Y., Xu, Z., Xia, J., Tsai, S.-T., Wu, Y., Li, G., Ray, C., and Yu, L., For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%, Adv. Mater., 2010, vol. 22, no. 20, pp. E135–E138. https://doi.org/10.1002/adma.200903528

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafida Chemouri.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Amine, Z.M., Hassina, D.H., Chemouri, H. et al. Computational Explanation of the Photovoltaic Cells Properties of the PCBM and PC71BM Derivatives using the Density Functional Theory. Theor Found Chem Eng 57, 1627–1639 (2023). https://doi.org/10.1134/S0040579523330138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523330138

Keywords:

Navigation