Skip to main content
Log in

The Influence of Ionic Liquids on Solubility and Metastable Zone Width of Hen Egg Lysozyme

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The solubility and metastable zone width (MZW) are crucial to design and control of crystallization process. In this work, lysozyme solubility in different pH (4.0–6.0) aqueous solution at temperature ranging from 268.15 to 308.15 K were determined. The solubility and supersolubility of lysozyme with two ionic liquids (ILs) (1-butyl-3-methylimidazolium chloride ([C4mim]Cl) and 1,3-dimethylimidazolium iodine ([dmim]I)) were measured in aqueous solution at temperature ranging from 283.15 to 298.15 K at pH 5.0, and the MZW was calculated. The results demonstrate that lysozyme solubility increases with raising pH within 4.0 to 6.0. In the presence of ILs, the solubility increases with increasing [C4mim]Cl concentrations, but decreases with increasing [dmim]I concentrations. The ILs addition concentrations were confirmed to exert obvious effect on MZW of lysozyme crystallization. Compared with no ILs added, the addition of ILs [C4mim]Cl and [dmim]I expands significantly the MZW, and the MZW increases with increasing ILs concentrations. At constant ILs concentrations, the MZW increases with decreasing saturation temperature. These findings could provide significant insights into the development of crystallization strategy and the control of crystallization process for lysozyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Jiang, L., Li, Y., Wang, L., Guo, Y., Liu, W., Meng, G., Zhang, L., Li, M., Cong, L., and Sun, M., Recent insights into the prognostic and therapeutic applications of lysozymes, Front. Pharmacol., 2021, vol. 12, article no. 767642. https://doi.org/10.3389/fphar.2021.767642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Wu, T., Jiang, Q., Wu, D., Hu, Y., Chen, S., Ding, T., Ye, X., Liu, D., and Chen, J., What is new in lysozyme research and its application in food industry? A review, Food Chem., 2019, vol. 274, pp. 698–709. https://doi.org/10.1016/j.foodchem.2018.09.017

    Article  PubMed  CAS  Google Scholar 

  3. Fan, Q., Abouelezz, K.F.M., Li, L., Gou, Z., Wang, Y., Lin, X., Ye, J., and Jiang, S., Influence of mushroom polysaccharide, nano-copper, copper-loaded chitosan, and lysozyme on intestinal barrier and immunity of LPS-mediated yellow-feathered chickens, Animals, 2020, vol. 10, no. 4, article no. 594, pp. 1–15. https://doi.org/10.3390/ani10040594

  4. Tenovuo, J., Clinical applications of antimicrobial host proteins lactoperoxidase, lysozyme and lactoferrin in xerostromia: Efficacy and safety, Oral.Dis., 2002, vol. 8, no. 1, pp. 23–29. https://doi.org/10.1034/j.16010825.2002.1o781.x

    Article  PubMed  CAS  Google Scholar 

  5. Sim, Y.C., Lee, S.G., Lee, D.C., Kang, B.Y., Park, K.M., Lee, J.Y., Kim, M.S., Chang, I.S., and Rhee, J.S., Stabilization of papain and lysozyme for application to cosmetic products, Biotechnol. Lett., 2000, vol. 22, no. 2, pp. 137–140. https://doi.org/10.1023/A:1005670323912

    Article  CAS  Google Scholar 

  6. Ferraboschi, P., Ciceri S., and Grisenti, P., Application of lysozyme, an innate imuune defence factor, as an alternative antibiotic, Antibiotics, 2021, vol. 10, no. 12, article no. 1534, pp. 1–55. https://doi.org/10.3390/antibiotics10121534

  7. Lee, E.Y., Woo G.J., and Park, J., Food Sci. Biotechnol., 2003, vol. 12, no. 4, p. 371.

    CAS  Google Scholar 

  8. Maosoongnern, S., Flood, C., Flood, A.E., and Ulrich, J., Crystallization of lysozyme from lysozyme–ovalbumin mixtures: Separation potential and crystal growth kinetics, J. Cryst, Growth, 2017, vol. 469, pp. 2–7. https://doi.org/10.1016/j.jcrysgro.2016.09.049

    Article  ADS  CAS  Google Scholar 

  9. Abeyrathne, E.D.N.S., Lee, H.Y., and Ahn, D.U., Egg white proteins and their potential use in food processing or as nutraceutical agents—A review. Poult. Sci., 2013, vol. 92, no. 12, pp. 3292–3299. https://doi.org/10.3382/ps.2013-03391

    Article  PubMed  CAS  Google Scholar 

  10. Grasselli, M., Camperi, S.A., del Cañizo, A.A.N., and Cascone, O., Direct lysozyme separation from egg white by dye membrane affinity chromatography, J. Sci. Food Agr., 1999, vol. 79, no. 2, pp. 333–339. https://doi.org/10.1002/(SICI)1097-0010(199902)79:2<333::AID-JSFA198>3.0.CO;2-L

    Article  CAS  Google Scholar 

  11. Dembczynski, R., Bialas, W., and Jankowski, T., Application of aqueous two-phase extraction to separate lysozyme from hen egg white, Zywnosc, Nauka, Technologia, Jakosc, 2009, vol. 16, no. 5, pp. 5–17.

    CAS  Google Scholar 

  12. Mao, Y.F., Li, F., Wang, T., Cheng, X., Li, G., Li, D., Zhang X., and Hao, H., Enhancement of lysozyme crystallization under ultrasound field, Ultrason. Sonochem., 2020, vol. 63, article no. 104975. https://doi.org/10.1016/j.ultsonch.2020.104975

    Article  PubMed  CAS  Google Scholar 

  13. Papanikolau, Y., Gessmann, R., Petratos, K., Igarashi, K., and Kokkinidis, M., J. Cryst. Growth, 2000, vol. 210, no. 4, pp. 761–766. https://doi.org/10.1016/S0022-0248(99)00817-9

    Article  ADS  CAS  Google Scholar 

  14. Dos Santos, R., Carvalho, A.L., and Roque, A.C.A., Renaissance of protein crystallization and precipitation in biopharmaceuticals purification, Biotechnol. Adv., 2017, vol. 35, no. 1, pp. 41–50. https://doi.org/10.1016/j.biotechadv.2016.11.005

    Article  PubMed  CAS  Google Scholar 

  15. Sánchez-García, Y.I., Gutiérrez-Méndez, N., Salmerón, I., Ramos-Sánchez, V.H., Leal-Ramos, M.Y., and Sepúlveda, D.R., Mutarotation and solubility of lactose as affected by carrageenans, Food Res. Int., 2021, vol. 142, article no. 110204. https://doi.org/10.1016/j.foodres.2021.110204

    Article  PubMed  CAS  Google Scholar 

  16. Lenka, M. and Sarkar, D., Determination of metastable zone width, induction period and primary nucleation kinetics for cooling crystallization of L-asparaginenohydrate, J. Cryst. Growth, 2014, vol. 408, pp. 85–90. https://doi.org/10.1016/j.jcrysgro2014.09.027

  17. Xu, S.N., Lin, D.Q., Tian,B., and Yao, S.J., J. Chem. Eng. Chin. Univ., 2020, vol. 34, no. 6, p. 1436. https://doi.org/10.3969/j.issn.1003-9015.2020.06.014

    Article  CAS  Google Scholar 

  18. Lu, J., Wang, X.-J., and Ching, C.-B., Batch crystallization of soluble proteins: Effect of precipitant, temperature and additive, Prog. Cryst. Growth Charact. Mater., 2002, vol. 45, no. 3, pp. 201–217. https://doi.org/10.1016/S0960-8974(03)00003-2

    Article  CAS  Google Scholar 

  19. Zhang, W.-X., Gao, Y.-R., Xue, R., Nguyen, W., Chen, W., Wang, J.-H., and Shu, Y., Liquid formulations based on ionic liquids in biomedicine, Mater. Today Phys., 2023, vol. 30, article no. 100925. https://doi.org/10.1016/j.mtphys.2022.100925

    Article  CAS  Google Scholar 

  20. Zhang, D.-Z., Ren, Y.-Y., Hu, Y., Li, L., and Yan, F., Ionic liquid/poly(ionic liquid)-based semi-solid state electrolytes for lithium-ion batteries, Chin. J. Polym. Sci., 2020, vol. 38, no. 5, pp. 506–513. https://doi.org/10.1007/s10118-020-2390-1

    Article  CAS  Google Scholar 

  21. Judge, R.A., Takahashi, S., Longenecker, K.L., Fry, E.H., Abad-Zapatero, C., and Chiu, M.L., The effect of ionic liquids on protein crystallization and X-ray diffraction resolution, Cryst. Growth. Des., 2009, vol. 9, no. 8, pp. 3463–2369. https://doi.org/10.1021/cg900140b

    Article  CAS  Google Scholar 

  22. Wang, Z., Xiao, H., Han, Y., Jiang, P., and Zhou, Z., The effect of four imidazolium ionic liquids on hen egg white lysozyme solubility, J. Chem. Eng. Data, 2011, vol. 56, no. 4, pp. 1700–1703. https://doi.org/10.1021/je100880a

    Article  CAS  Google Scholar 

  23. Wang, Z., Dang, L., Han, Y., Jiang, P., and Wei, H., Crystallization control of thermal stability and morphology of hen egg white lysozyme crystals by ionic liquids, J. Agric. Food Chem., 2010, vol. 58, no. 9, pp. 5444–5448. https://doi.org/10.1021/jf1000343

    Article  PubMed  CAS  Google Scholar 

  24. Li, X., Huang, K., Lin, J., Xu, Y., and Liu, H., Hofmeister ion series and its mechanism of action on affecting the behavior of macromolecular solutes in aqueous solution, Prog. Chem., 2014, vol. 26, no. 8, pp. 1285–1291. https://doi.org/10.7536/PC140436

    Article  CAS  Google Scholar 

  25. Gehle, R.D. and Schügerl, K., Protein recovery by continuous flotation, Appl. Microbiol. Biotechnol., 1984, vol. 20, no. 2, pp. 133–138. https://doi.org/10.1007/BF00252591

    Article  CAS  Google Scholar 

  26. Florin, E., Kjellander, R., and Eriksson, J.C., Salt effects on the cloud point of the poly(ethylene oxide) + water system, J. Chem. Soc., Faraday Trans., 1984, vol. 80, no. 11, pp. 2889–2910. https://doi.org/10.1039/f19848002889

    Article  CAS  Google Scholar 

  27. Zhang, Y., Furyk, S., Bergbreiter, D.E., and Cremer, P.S., Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series, J. Am. Chem. Soc., 2005, vol. 127, no. 41, pp. 14505–14510. https://doi.org/10.1021/ja0546424

    Article  PubMed  CAS  Google Scholar 

  28. Fujita, K., MacFarlane, D.R., Forsyth, M., Yoshizawa-Fujita, M., Murata, K., Nakamura, N., and Ohno, H., Solubility and stability of cytochrome c in hydrated ionic liquids: Effect of oxo acid residues and kosmotropicity. Biomacromolecules, 2007, vol. 8, no. 7, pp. 2080–2086. https://doi.org/10.1021/bm070041o

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (21978206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanzhong Wang.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, N., Zhang, X. et al. The Influence of Ionic Liquids on Solubility and Metastable Zone Width of Hen Egg Lysozyme. Theor Found Chem Eng 57, 1602–1609 (2023). https://doi.org/10.1134/S0040579523330102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523330102

Keywords:

Navigation