Skip to main content
Log in

Design and Control of Ethyl Acetate–Ethanol Separation via Pressure-Swing Distillation

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Ethyl acetate can be obtained directly from ethanol by dehydrogenation and this is respected as a promising process. This work explores the design and control of pressure-swing distillation systems for separation of ethyl acetate/ethanol during the ethyl acetate production process. Rigorous steady-state and dynamic simulations are implemented using commercial simulators Aspen Plus and Aspen Dynamics. The dynamic simulation results reveal that the control structure CS1 are unable to maintain the bottom products at their quality specifications while control structure CS2 can only hold the quality specification of ethanol from the bottom of atmospheric column with feed flow rate disturbance. The dynamic responses of dual temperature control (CS3) work pretty well for this partially heat-integrated pressure-swing distillation, even for large feed flow rate and composition disturbances. Effectiveness of dual temperature control with QR/F ratio fixed control structure for feed flow rate disturbance is investigated and results indicated a better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. Sengupta, S., Sonkar, S.M., and Singh, S., The green chemistry challenge awards, Resonance, 2023, vol. 28, no. 3, pp. 465–474. https://doi.org/10.1007/s12045-023-1566-8

    Article  Google Scholar 

  2. Zhang, S., Guo, F., Yan, W., Dong, W., Zhou, J., Zhang, W., Xin, F., and Jiang, M., Perspectives for the microbial production of ethyl acetate, Appl. Microbiol. Biotechnol., 2020, vol. 104, no. 17, pp. 7239–7245. https://doi.org/10.1007/s00253-020-10756-z

    Article  CAS  PubMed  Google Scholar 

  3. Giwa, A., Giwa, S.O., Bayram, I., and Karacan, S., Simulations and economic analyses of ethyl acetate productions by conventional and reactive distillation processes using Aspen Plus, Int. J. Eng. Res. Technol., 2013, vol. 2, no. 8, pp. 1–12.

    Google Scholar 

  4. Van Wettere, B., Aghakhani, S., Lauwaert, J., and Thybaut, J.W., Ethyl acetate synthesis by direct addition of acetic acid to ethylene on a silicotungstic acid catalyst: Experimental assessment of the kinetics, Appl. Catal., A, 2022, vol. 646, article no. 118849. https://doi.org/10.1016/j.apcata.2022.118849

  5. Monick, J.A., Alcohols: Their chemistry, properties, and manufacture, New York: Reinhold Book Corp, 1968.

    Google Scholar 

  6. McMurry, S., Study Guide and Solutions Manual for McMurry’s Organic Chemistry, McMurry, J.E., Ed., Pacific Grove, CA: Brooks/Cole, 2000.

  7. Kirk-Othmer Encyclopedia of Chemical Technology, Kroschwitz J.I., Ed., Hoboken, NJ: Wiley, 2004.

    Google Scholar 

  8. Gallo, J.M.R., Bueno, J.M.C., and Schuchardt, U., Catalytic transformations of ethanol for biorefineries, J. Braz. Chem. Soc., 2014, vol. 25, no. 12, pp. 2229–2243. https://doi.org/10.5935/0103-5053.20140272

    Article  CAS  Google Scholar 

  9. Löser, C., Urit, T., and Bley, T., Perspectives for the biotechnological production of ethyl acetate by yeasts, Appl. Microbiol Biotechnol., 2014, vol. 98, no. 12, pp. 5397–5415. https://doi.org/10.1007/s00253-014-5765-9

    Article  CAS  PubMed  Google Scholar 

  10. Šulgan, B., Labovský, J., and Labovská, Z., Multi-aspect comparison of ethyl acetate production pathways: Reactive distillation process integration and intensification via mechanical and chemical approach, Processes, 2020, vol. 8, no. 12, article no. 1618. pp. 1–32. https://doi.org/10.3390/pr8121618

  11. Advanced Organic Chemistry: Reactions, Mechanisms and Structure, March, J., Ed., New York: Wiley, 1992.

    Google Scholar 

  12. Ogata, Y. and Kawasaki, A., Alkoxide transfer from aluminium alkoxide to aldehyde in the Tishchenko reaction, Tetrahedron, 1969, vol. 25, no. 4, pp. 929–935. https://doi.org/10.1016/0040-4020(69)85026-X

    Article  CAS  Google Scholar 

  13. Idriss, H. and Seebauer, E.G., Reactions of ethanol over metal oxides, J. Mol. Catal. A: Chem., 2000, vol. 152, nos. 1–2, pp. 201–212. https://doi.org/10.1016/S1381-1169(99)00297-6

  14. Seki, T., Nakajo, T., and Onaka, M., The Tishchenko reaction: A classic and practical tool for ester synthesis, ChemInform, 2007, vol. 38, no. 1. https://doi.org/10.1002/chin.200701236

  15. Bromberg, L., Su. X., and Hatton, T.A., Aldehyde self-condensation catalysis by aluminum aminoterephthalate metal–organic frameworks modified with aluminum isopropoxide, Chem. Mater., 2013, vol. 25, no. 9, pp. 1636–1642. https://doi.org/10.1021/cm400021g

    Article  CAS  Google Scholar 

  16. Gusev, D.G. and Spasyuk, D.M., Revised mechanisms for aldehyde disproportionation and the related reactions of the Shvo catalyst, ACS Catal., 2018, vol. 8, no. 8, pp. 6851–6861. https://doi.org/10.1021/acscatal.8b01153

    Article  CAS  Google Scholar 

  17. EP Patent 0 757 027 A1, 1996.

  18. EP Patent 0 562 139 B1, 1992.

  19. Howard, M.J., Sunley, G.J., Poole, A.D., Watt, R.J., and Sharma, B.K., New acetyls techonologies from BP chemicals, Stud. Sci. Technol. Catal., 1999, vol. 121, pp. 61–68. https://doi.org/10.1016/s0167-2991(99)80045-7

    Article  CAS  Google Scholar 

  20. Vargas, D.C., Salazar, S., Mora, J.R., Van Geem, K.M., and Streitwieser, D.A, Experimental and theoretical study of the thermal decomposition of ethyl acetate during fast pyrolysis, Chem. Eng. Res. Des., 2020, vol. 157, pp. 153–161. https://doi.org/10.1016/j.cherd.2020.03.001

    Article  CAS  Google Scholar 

  21. Yamamoto, Y., Hatanaka, S., Tsuji, K., Tsuneyama, K., Ohnishi, R., Imai, H., Kamiya, Y., and Okuhara, T., Direct addition of acetic acid to ethylene to form ethyl acetate in the presence of H4SiW12O40/SiO2, Appl. Catal., A, 2008, vol. 344, nos. 1–2, pp. 55–60. https://doi.org/10.1016/j.apcata.2008.03.040

  22. Inui, K., Kurabayashi, T., and Sato, S., Direct synthesis of ethyl acetate from ethanol carried out under pressure, J. Catal., 2002, vol. 212, no. 2, pp. 207–215. https://doi.org/10.1006/jcat.2002.3769

    Article  CAS  Google Scholar 

  23. Wang, L., Zhu, W., Zheng, D., Yu, X., Cui, J., Jia, M., Zhang, W., and Wang, Z., Direct transformation of ethanol to ethyl acetate on Cu/ZrO2 catalyst, React. Kinet., Mech. Catal., 2010, vol. 101, no. 2, pp. 365–375. https://doi.org/10.1007/s11144-010-0216-9

    Article  CAS  Google Scholar 

  24. Sharma, B., Larroche, C., and Dussap, C.-G., Comprehensive assessment of 2G bioethanol production, Bioresour. Technol., 2020, vol. 313, article no. 123630. https://doi.org/10.1016/j.biortech.2020.123630

    Article  CAS  PubMed  Google Scholar 

  25. Bušić, A., Marđetko, N., Kundas, S., Morzak, G., Belskaya, H., Šantek M.I., Komes, D., Novak, S., and Šantek, B., Bioethanol production from renewable raw materials and its separation and purification: A review, Food Technol. Biotechnol., 2018, vol. 56, no. 3, pp. 289–311. https://doi.org/10.17113/ftb.56.03.18.5546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gaspar, A.B., Esteves, A.M.L., Mendes, F.M.T., Barbosa, F.G., and Appel, L.G., Chemicals from ethanol—The ethyl acetate one-pot synthesis, Appl. Catal., A, 2009, vol. 363, nos. 1–2, pp. 109–114. https://doi.org/10.1016/j.apcata.2009.05.001

  27. Klimkiewicz, R., Upgrading oxygenated Fischer-Tropsch derivatives and one-step direct synthesis of ethyl acetate from ethanol—examples of the desirability of research on simple chemical compounds transformations, Chem. Cent. J., 2014, vol. 8, no. 1, article no. 77. https://doi.org/10.1186/s13065-014-0077-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ro, I., Liu, Y., Ball, M.R., Jackson, D.H.K., Chada, J.P., Sener, C., Kuech, T.F., Madon, R.J., Huber, G.W., and Dumesic, J.A., Role of the Cu–ZrO2 interfacial sites for conversion of ethanol to ethyl acetate and synthesis of methanol from CO2 and H2, ACS Catal., 2016, vol. 6, no. 10, pp. 7040–7050. https://doi.org/10.1021/acscatal.6b01805

    Article  CAS  Google Scholar 

  29. Colley, S.W., Tabatabaei, J., Waugh, K.C., and Wood, M.A., The detailed kinetics and mechanism of ethyl ethanoate synthesis over a Cu/Cr2O3 catalyst, J. Catal., 2005, vol. 236, no. 1, pp. 21–33. https://doi.org/10.1016/j.jcat.2005.09.012

    Article  CAS  Google Scholar 

  30. Sánchez, A.B., Homs, N., Fierro, J.L.G., and de la Piscina, P.R., New supported Pd catalysts for the direct transformation of ethanol to ethyl acetate under medium pressure conditions, Catal. Today, 2005, vols. 107–108, pp. 431–435. https://doi.org/10.1016/j.cattod.2005.07.057

  31. Li, R., Zhang, M., and Yu, Y., A DFT study on the Cu (111) surface for ethyl acetate synthesis from ethanol dehydrogenation, Appl. Surf. Sci., 2012, vol. 258, no. 18, pp. 6777–6784. https://doi.org/10.1016/j.apsusc.2012.01.171

    Article  CAS  Google Scholar 

  32. Nielsen, M., Junge, H., Kammer, A., and Beller, M., Towards a green process for bulk-scale synthesis of ethyl acetate: Efficient acceptorless dehydrogenation of ethanol, Angew. Chem., Int. Ed. Engl., 2012, vol. 51, no. 23, pp. 5711–5713. https://doi.org/10.1002/anie.201200625

    Article  CAS  PubMed  Google Scholar 

  33. Zonetti, P.C., Celnik, J., Letichevsky, S., Gaspar, A.B., and Appel, L.G., Chemicals from ethanol—The dehydrogenative route of the ethyl acetate one-pot synthesis, J. Mol. Catal. A: Chem., 2011, vol. 334, nos. 1–2, pp. 29–34. https://doi.org/10.1016/j.molcata.2010.10.019

  34. Luyben, W.L. and Chien, I.-L., Pressure-swing azeotropic distillation, in Design and Control of Distillation Systems for Separating Azeotropes, Hoboken, NJ: Wiley, 2020, pp. 149–164.

    Google Scholar 

  35. Navarro, M.A., Caballero, J.A., and Grossmann, I.E., Strategies for the robust simulation of thermally coupled distillation sequences, Comput. Chem. Eng., 2011, vol. 29, pp. 196–200. https://doi.org/10.1016/B978-0-444-53711-9.50040-7

    Article  CAS  Google Scholar 

  36. Vázquez-Ojeda, M., Segovia-Hernández, J.G., Hernández, S., Hernández-Aguirre, A., and Maya-Yescas, R., Optimization and controllability analysis of thermally coupled reactive distillation arrangements with minimum use of reboilers, Ind. Eng. Chem. Res., 2012, vol. 51, no. 17, pp. 5856–5865. https://doi.org/10.1021/ie200929t

    Article  CAS  Google Scholar 

  37. Delgado-Delgado, R., Barroso-Muñoz, F.O., Segovia-Hernández, J.G., Hernández-Escoto, H., Castro-Montoya, A.J., Rico-Ramírez, V., and Hernández, S., Multiple steady states in thermally coupled distillation sequences: Revisiting the design, energy optimization, and control, Ind. Eng. Chem. Res., 2014, vol. 53, no. 44, pp. 17515–17521. https://doi.org/10.1021/ie502748d

    Article  CAS  Google Scholar 

  38. Halvorsen, I.J., Dejanović, I., Skogestad, S., and Olujić, Ž., Internal configurations for a multi-product dividing wall column, Chem. Eng. Res. Des., 2013, vol. 91, no. 10, pp. 1954–1965. https://doi.org/10.1016/j.cherd.2013.07.005

    Article  CAS  Google Scholar 

  39. Dejanović, I., Halvorsen, I.J., Skogestad, S., Jansen, H., and Olujić, Ž., Hydraulic design, technical challenges and comparison of alternative configurations of a four-product dividing wall column, Chem. Eng. Process., 2014, vol. 84, pp. 71–81. https://doi.org/10.1016/j.cep.2014.03.009

    Article  CAS  Google Scholar 

  40. Li, W., Shi, L., Yu, B., Xia, M., Luo, J., Shi, H., and Xu, C., New pressure-swing distillation for separating pressure-insensitive maximum boiling azeotrope via introducing a heavy entrainer: Design and control, Ind. Eng. Chem. Res., 2013, vol. 52, no. 23, pp. 7836–7853. https://doi.org/10.1021/ie400274d

    Article  CAS  Google Scholar 

  41. Yu, B., Wang, Q., and Xu, C., Design and control of distillation system for methylal/methanol separation, Part 2: Pressure swing distillation with full heat integration, Ind. Eng. Chem. Res., 2012, vol. 51, no. 3, pp. 1293–1310. https://doi.org/10.1021/ie201949q

    Article  CAS  Google Scholar 

  42. Wang, Y., Cui, P., Ma, Y., and Zhang, Z., Extractive distillation and pressure-swing distillation for THF/ethanol separation, J. Chem. Technol. Biotechnol., 2015, vol. 90, no. 8, pp. 1463–1472. https://doi.org/10.1002/jctb.4452

    Article  CAS  Google Scholar 

  43. Luyben, W.L., Control of an extractive distillation system for the separation of CO2 and ethane in enhanced oil recovery processes, Ind. Eng. Chem. Res., 2013, vol. 52, no. 31, pp. 10780–10787. doi.org/https://doi.org/10.1021/ie401602c

    Article  CAS  Google Scholar 

  44. Liang, S., Cao, Y., Liu, X., Li, X., Zhao, Y., Wang, Y., and Wang, Y., Insight into pressure-swing distillation from azeotropic phenomenon to dynamic control, Chem. Eng. Res. Des., 2017, vol. 117, pp. 318–335. https://doi.org/10.1016/j.cherd.2016.10.040

    Article  CAS  Google Scholar 

  45. Li, X., Geng, X., Cui, P., Yang, J., Zhu, Z., Wang, Y., and Xu, D., Thermodynamic efficiency enhancement of pressure–swing distillation process via heat integration and heat pump technology, Appl. Therm. Eng., 2019, vol. 154, pp. 519–529. https://doi.org/10.1016/j.applthermaleng.2019.03.118

    Article  CAS  Google Scholar 

  46. Zhang, Q., Yang, S., Shi, P., Hou, W., Zeng, A., Ma, Y., and Yuan, X., Economically and thermodynamically efficient heat pump-assisted side-stream pressure-swing distillation arrangement for separating a maximum-boiling azeotrope, Appl. Therm. Eng., 2020, vol. 173, article no. 115228. https://doi.org/10.1016/j.applthermaleng.2020.115228

    Article  Google Scholar 

  47. Ferchichi, M., Hegely, L., and Lang, P., Economic and environmental evaluation of heat pump-assisted pressure-swing distillation of maximum-boiling azeotropic mixture water–ethylenediamine, Energy, 2022, vol. 239, part E, article no. 122608. https://doi.org/10.1016/j.energy.2021.122608

  48. Renon, H. and Prausnitz, J.M., Local compositions in thermodynamic excess functions for liquid mixtures, AIChE J., 1968, vol. 14, no. 1, pp. 135–144. https://doi.org/10.1002/aic.690140124

    Article  CAS  Google Scholar 

  49. Tochigi, K., Inoue, H., and Kojima, K., Determination of azeotropes in binary systems at reduced pressures, Fluid Phase Equilib., 1985, vol. 22, no. 3, pp. 343–352. https://doi.org/10.1016/0378-3812(85)87030-8

    Article  CAS  Google Scholar 

  50. Yan, X., Qi, W., Chen, G., and Han, S., Determination of azeotropes at superatmospheric pressures for binary and ternary systems, CIESC J., 1996, vol. 47, no. 1, pp. 106–109.

    CAS  Google Scholar 

  51. Luyben, W.L., Steady-state calculations for control structure selection, in Distillation Design and Control Using Aspen™ Simulation, Hoboken, NJ: Wiley, 2013. pp. 127–144.

    Book  Google Scholar 

  52. Luyben, W.L., Plantwide Dynamic Simulators in Chemical Processing and Control, Boca Raton: CRC, 2002.

    Book  Google Scholar 

  53. Tyreus, B.D., Selection of controller structure, in Practical Distillation Control, Luyben, W.L., Ed., New York, NY: Springer, 1992, pp. 178–191. https://doi.org/10.1007/978-1-4757-0277-4_9

    Book  Google Scholar 

  54. Abu-Eishah, S.I. and Luyben, W.L., Design and control of a two-column azeotropic distillation system, Ind. Eng. Chem. Process., 1985, vol. 24, no. 1, pp. 132–140. https://doi.org/10.1021/i200028a024

    Article  CAS  Google Scholar 

  55. Luyben, W.L., Tuning proportional–integral–derivative controllers for integrator/deadtime processes, Ind. Eng. Chem. Process., 1996, vol. 35, no. 10, pp. 3480-3483. https://doi.org/10.1021/ie9600699

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Yingzhe.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuhan, L., Yamei, S., Xiuqin, D. et al. Design and Control of Ethyl Acetate–Ethanol Separation via Pressure-Swing Distillation. Theor Found Chem Eng 57, 917–932 (2023). https://doi.org/10.1134/S0040579523050469

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523050469

Keywords:

Navigation