Skip to main content
Log in

Synthesis of Biodegradable Film Made from Sodium Alginate Embedded with Magnesium Nanoparticles for Food Packaging Applications

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The current work focuses on the synthesis of the biodegradable film made from Sodium alginate (S.A), and then the addition of magnesium oxide nanoparticles (MgO-NPs) was synthesized by sol-gel technique. Glycerol which is a plasticizer is used to enhance the tensile strength (TS) and film expansion due to a decrease in intermolecular forces in the polymer chain. With the addition of olive oil (OE), the functional properties of control films were improved, which results in a lowering of water solubility, and moisture content but the tensile strength slightly decreased. The opacity, moisture absorption, and solubility of the film, thickness, tensile strength (TS), elongation (EB), ultraviolet-vis spectroscopy, scanning electron microscope (SEM), transmission electron microscopy (TEM) were used to characterize sodium alginate biofilm with the addition of MgO-NPs (SA1) and without the addition of MgO-NPs (SA2). But considering all other factors, the film (SA1) revealed a slower rate of degradation than the film (SA2). The film’s TS and opacity are enhanced by MgO-NPs addition, while moisture content (WVP), solubility, and elongation at break are decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Shafqat, A., Al-Zaqri, N., Tahir, A., and Alsalme, A., Synthesis and characterization of starch based bioplatics using varying plant-based ingredients, plasticizers and natural fillers, Saudi J. Biol. Sci., 2021, vol. 28, no. 3, pp. 1739–1749. https://doi.org/10.1016/j.sjbs.2020.12.015

    Article  CAS  PubMed  Google Scholar 

  2. Ibrahim, S., Elsayed, H., and Hasanin, M., Biodegradable, antimicrobial and antioxidant biofilm for active packaging based on extracted gelatin and lignocelluloses biowastes, J. Polym. Environ., 2021, vol. 29, no. 2, pp. 472–482. https://doi.org/10.1007/s10924-020-01893-7

    Article  CAS  Google Scholar 

  3. Castro-Yobal, M.A., Contreras-Oliva, A., Saucedo-Rivalcoba, V., Rivera-Armenta, J.L., Hernández-Ramírez, G., Salinas-Ruiz, J., and Herrera-Corredor, A., Evaluation of physicochemical properties of film-based alginate for food packing applications, e-Polymers, 2021, vol. 21, no. 1, pp. 82–95. https://doi.org/10.1515/epoly-2021-0011

  4. Swaroop, C. and Shukla, M., Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications, Int. J. Biol. Macromol., 2018, vol. 113, pp. 729–736. https://doi.org/10.1016/j.ijbiomac.2018.02.156

    Article  CAS  PubMed  Google Scholar 

  5. Kumar, H., Gaur, A., and Karuna, M.S., Synthesis of biodegradable carboxymethyl cellulose film-loaded magnesium nanoparticles, Emergent mater., 2023, vol. 6, no. 2, pp. 561–571. https://doi.org/10.1007/s42247-023-00473-4

  6. Wahab, R., Ansari, S.G., Dar, M.A., Kim, Y.S., and Shin, H.S., Synthesis of magnesium oxide nanoparticles by sol–gel process, Mater. Sci. Forum, 2007, vols. 558–559, pp. 983–986. https://doi.org/10.4028/www.scientific.net/MSF.558-559.983

  7. Kumar, H., Gaur, A., Kumar, S., and Park, J.-W., Development of silver nanoparticles-loaded CMC hydrogel using bamboo as a raw material for special medical applications, Chem. Pap., 2019, vol. 73, no. 4, pp. 953–964. https://doi.org/10.1007/s11696-018-0650-0

    Article  CAS  Google Scholar 

  8. Kumar, H., Gehlaut, A.K., Gaur, A., Park, J.-W., and Maken, S., Development of zinc-loaded nanoparticle hydrogel made from sugarcane bagasse for special medical application, J. Mater. Cycles Waste Manage., 2020, vol. 22, no. 6, pp. 1723–1733. https://doi.org/10.1007/s10163-020-01054-x

    Article  CAS  Google Scholar 

  9. Kumar, H., Gehlaut, A.K., Gupta, H., Gaur, A., and Park, J.-W., Development of copper loaded nanoparticles hydrogel made from waste biomass (sugarcane bagasse) for special medical application, Key Eng. Mater., 2020, vol. 847, pp. 102–107. https://doi.org/10.4028/www.scientific.net/kem.847.102

  10. Kumar, H., Gehlaut, A.K., Gupta, H., Gaur, A., Kamsonlian, S., and Kumar, D., Facile synthesis and application of aluminum oxide nanoparticle based biodegradable film, Polym. Compos., 2021, vol. 42, no. 8, pp. 3899–3910. https://doi.org/10.1002/pc.26102

    Article  CAS  Google Scholar 

  11. Castillo, I.F., De Matteis, L., Marquina, C., Guillen, E.G., de la Fuente, J.M., and Mitchell, S.G., Protection of 18th century paper using antimicrobial nano-magnesium oxide, Int. Biodeterior. Biodegrad., 2019, vol. 141, pp. 79–86. https://doi.org/10.1016/j.ibiod.2018.04.004

    Article  CAS  Google Scholar 

  12. Ammulu, M.A., Viswanath, K.V., Giduturi, A.K., Vemuri, P.K., Mangamuri, U., and Poda, S., Phytoassisted synthesis of magnesium oxide nanoparticles from Pterocarpus marsupium rox.b heartwood extract and its biomedical applications, J. Genet. Eng. Biotechnol., 2021, vol. 19, article no. 21, pp. 1–18. https://doi.org/10.1186/s43141-021-00119-0

  13. Mastuli, M.S., Kamarulzaman, N., Nawawi, M.A., Mahat, A.M., Rusdi, R., and Kamarudin, N., Growth mechanisms of MgO nanocrystals via a sol–gel synthesis using different complexing agents, Nanoscale Res Lett., 2014, vol. 9, no. 1, article no. 134. https://doi.org/10.1186/1556-276X-9-134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Balakrishnan, G., Velavan, R., Batoo, K.M., and Raslan, E.H., Microstructure, optical and photocatalytic properties of MgO nanoparticles, Results Phys., 2020, vol. 16, article no. 103013. https://doi.org/10.1016/j.rinp.2020.103013

    Article  Google Scholar 

  15. Sharma, G., Soni, R., and Jasuja, N.D., Phytoassisted synthesis of magnesium oxide nanoparticles with Swertia chirayaita, J. Taibah Univ. Sci., 2017, vol. 11, no. 3, pp. 471–477. https://doi.org/10.1016/j.jtusci.2016.09.004

    Article  Google Scholar 

  16. Jung, J., Li, L., Yeh, C.-K., Ren, X., and Sun, Y., Amphiphilic quaternary ammonium chitosan/sodium alginate multilayer coatings kill fungal cells and inhibit fungal biofilm on dental biomaterials, Mater. Sci. Eng., C, 2019, vol. 104, article no. 109961, pp. 1–9. https://doi.org/10.1016/j.msec.2019.109961

  17. Sarwar, M.S., Ghaffar, A., and Huang, Q., Development and characterization of sodium alginate/poly(sodium 4-styrenesulfonate) composite films for release behavior of ciprofloxacin hydrogen chloride monohydrate, Polym. Polym. Compos., 2021, vol. 29, no. 9S, pp. S143–S153. https://doi.org/10.1177/0967391121990278

    Article  CAS  Google Scholar 

  18. Comaposada, J., Gou, P., Marcos, B., and Arnau, J., Physical properties of sodium alginate solutions and edible wet calcium alginate coatings, LWT-Food Sci. Technol., 2015, vol. 64, no. 1, pp. 212–219. https://doi.org/10.1016/j.lwt.2015.05.043

    Article  CAS  Google Scholar 

  19. Galus, S., and Lenart, A., Development and characterization of composite edible films based on sodium alginate and pectin, J. Food Eng., 2013, vol. 115, no. 4, pp. 459–465. https://doi.org/10.1016/j.jfoodeng.2012.03.006

    Article  CAS  Google Scholar 

  20. Suhail, M., Khan, A., Rosenholm, J.M., Minhas, M.U., and Wu, P-C., Fabrication and characterization of diclofenac sodium loaded hydrogels of sodium alginate as sustained release carrier, Gels, 2021, vol. 7, no. 1, article no. 10, pp. 1–16. https://doi.org/10.3390/gels7010010

  21. Li, S., Wang, Y., Li, X., Lee, B.S., Jung, S., and Lee, M.-S., Enhancing the thermo-stability and anti-biofilm activity of alginate lyase by immobilization on low molecular weight chitosan nanoparticles, Int. J. Mol. Sci., 2019, vol. 20, no. 18, article no. 4565, pp. 1–14. https://doi.org/10.3390/ijms20184565

  22. Rajkumar, M., Meenakshisundaram, N., and Rajendran, V., Development of nanocomposites based on hydroxyapatite/sodium alginate: Synthesis and characterization, Mater. Charact., 2011, vol. 62, no. 5, pp. 469–479. https://doi.org/10.1016/j.matchar.2011.02.008

    Article  CAS  Google Scholar 

  23. Saarai, A., Kasparkova, V., Sedlacek, T., and Saha, P., On the development and characterisation of crosslinked sodium alginate/gelatine hydrogels, J. Mech. Behav. Biomed. Mater., 2013, vol. 18, pp. 152–166. https://doi.org/10.1016/j.jmbbm.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  24. Ionita, M., Pandele, M.A., and Iovu, H., Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties, Carbohydr. Polym., 2013, vol. 94, no. 1, pp. 339–344. https://doi.org/10.1016/j.carbpol.2013.01.065

    Article  CAS  PubMed  Google Scholar 

  25. Ning, H., Lu, L., Xu, J., Lu, L., Pan, L., and Lin, Z., Development of sodium alginate-based antioxidant and antibacterial bioactive films added with IRMOF-3/carvacrol, Carbohydr. Polym., 2022, vol. 292, article no. 119682. https://doi.org/10.1016/j.carbpol.2022.119682

    Article  CAS  PubMed  Google Scholar 

  26. Jing, H., Huang, X., Du, X., Mo, L., Ma, C., and Wang, H., Facile synthesis of pH-responsive sodium alginate/carboxymethyl chitosan hydrogel beads promoted by hydrogen bond, Carbohydr. Polym., 2022, vol. 278, article no. 118993. https://doi.org/10.1016/j.carbpol.2021.118993

    Article  CAS  PubMed  Google Scholar 

  27. Kumar, H., Maurya, K.L., Gehlaut, A.K., Singh, D., Maken, S., Gaur, A., and Kamsonlian, S., Adsorptive removal of chromium(VI) from aqueous solution using binary bio-polymeric beads made from bagasse, Appl. Water Sci., 2020, vol. 10, no. 1, article no. 21, pp. 1–10. https://doi.org/10.1007/s13201-019-1101-y

  28. Gaur, A. and Kumar, H., Synthesis and swelling behavior of superabsorbent hydrogels acquired from CMC for efficient drug-delivery, Res. J. Chem. Environ., 2018, vol. 22, no. 5, pp. 19–26.

    Google Scholar 

  29. Tezel, G.B., A study on tunable viscoelastic properties of xhantan gum and sodium alginate hyrogelling system, Theor, Found. Chem. Eng., 2021, vol. 55, no. 1, pp. 464–471. https://doi.org/10.1134/S0040579521030210

    Article  Google Scholar 

  30. Gao, X., Guo, C., Hao, J., Zhao, Z., Long, H., and Li, M., Adsorption of heavy metal ions by sodium alginate based adsorbent – a review and new perspectives, Int. J. Biol. Macromol., 2020, vol. 164, pp. 4423–4434. https://doi.org/10.1016/j.ijbiomac.2020.09.046

    Article  CAS  PubMed  Google Scholar 

  31. Rhim, J-W., Physical and mechanical properties of water resistant sodium alginate films, LWT-Food Sci. Technol., 2004, vol. 37, no. 3, pp. 323–330. https://doi.org/10.1016/j.lwt.2003.09.008

    Article  CAS  Google Scholar 

  32. Gupta, H., Kumar, H., Kumar, M., Gehlaut, A.K., Gaur, A., Sachan, S., and Park, J.-W., Synthesis of biodegradable films obtained from rice husk and sugarcane bagasse to be used as food packaging material, Environ. Eng. Res., 2020, vol. 25, no. 4, pp. 506–514. https://doi.org/10.4491/eer.2019.191

    Article  Google Scholar 

  33. Gupta, H., Kumar, H., Gehlaut, A.K., Singh, S.K., Gaur, A., Sachan, S., and Park, J.-W., Preparation and characterization of bio-composite films obtained from coconut coir and groundnut shell for food packaging, J. Mater. Cycles Waste Manage., 2022, vol. 24, no. 2, pp. 569–581. https://doi.org/10.1007/s10163-021-01343-z

    Article  CAS  Google Scholar 

  34. Shahabi-Ghahfarrokhi, I., Khodaiyan, F., Mousavi, M., and Yousefi, H., Preparation of UV-protective kefiran/nano-ZnO nanocomposites: Physical and mechanical properties, Int. J. Biol. Macromol., 2015, vol. 72, pp. 41–46. https://doi.org/10.1016/j.ijbiomac.2014.07.047

    Article  CAS  PubMed  Google Scholar 

  35. Salarbashi, D., Mortazavi, S.A., Noghabi, M.S., Bazzaz, B.S.F., Sedaghat, N., Ramezan, M., and Shahabi-Ghahfarrokhi, I., Development of new active packaging film made from a soluble soybean polysaccharide incorporating ZnO nanoparticles, Carbohydr. Polym., 2016, vol. 140, pp. 220–227. https://doi.org/10.1016/j.carbpol.2015.12.043

    Article  CAS  PubMed  Google Scholar 

  36. Hanry, E.L. and Surugau, N., Characteristics and properties of biofilms made from pure carrageenan powder and whole seaweed (Kappaphycus sp.), J. Adv. Res. Fluid Mech. Therm. Sci., 2020, vol. 76, no. 2, pp. 99–220. https://doi.org/10.37934/arfmts.76.2.99110OpenAccess

    Article  Google Scholar 

Download references

Funding

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Kumar.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, H., Singh, A.K., Kumar, M. et al. Synthesis of Biodegradable Film Made from Sodium Alginate Embedded with Magnesium Nanoparticles for Food Packaging Applications. Theor Found Chem Eng 57, 977–984 (2023). https://doi.org/10.1134/S0040579523050457

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523050457

Keywords:

Navigation