Skip to main content
Log in

Mathematical Modeling and Simulation of Methane Steam Reforming Membrane Reactor

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The present investigation pertains to a theoretical study of mathematical model for methane steam reforming in membrane reactor, by simulating the operating variables of the reactor for high hydrogen yield and methane conversion. Basically, it deals with the development of the mathematical model of a fluidized bed Auto thermal membrane reactor (without integrated O2 perm-selective membranes), by using the mass balance macroscopically. Model is validated with the available experimental data in the literature and was found that the prediction from the models is in excellent agreement with the experimental values, with a maximum deviation of –12 to +13% and –12 to +1.8% for methane gas conversion and hydrogen yield, respectively. Finally, it investigates the effect of operating variables namely, reactor pressure, temperature, and steam to methane ratio (SMR) and permeates side pressure, on the methane gas conversion and hydrogen. The prediction reveals that the hydrogen yield and methane conversion increases with increase in reactor temperature and pressure whereas decreases with increase in SMR and permeate side pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Taghizadeh, M. and Aghili, F., Recent advances in membrane reactors for hydrogen production by steam reforming of ethanol as a renewable resource, Rev. Chem. Eng., 2019, vol. 35, no. 3, pp. 377–392. https://doi.org/10.1515/revce-2017-0083

    Article  CAS  Google Scholar 

  2. Helmi, A., Voncken, R.J.W., Raijmakers, A.J., Roghair, I., Gallucci, F., and van Sint Annaland, M., On concentration polarization in fluidized bed membrane reactors, Chem. Eng. J., 2018, vol. 332, pp. 464–478. https://doi.org/10.1016/j.cej.2017.09.045

    Article  CAS  Google Scholar 

  3. Sadeghi, M.T. and Mazaher, M., CFD Simulation of a methane steam reforming reactor, Int. J. Chem. React. Eng., 2008, vol. 6, no. 1. https://doi.org/10.2202/1542-6580.1593

  4. Dogan, M., Posarac, D., Grace, J., Adris, A.-E.M., and Lim, C.J., Modeling of autothermal steam methane reforming in a fluidized bed membrane reactor, Int. J. Chem. React. Eng., 2003, vol. 1, no. 1, article no. 20121009. https://doi.org/10.2202/1542-6580.1000

    Article  Google Scholar 

  5. Roy, S., Pruden, B.B., Adris, A.M., Grace, J.R., and Lim, C.J., Fluidized-bed steam methane reforming with oxygen input, Chem. Eng. Sci., 1999, vol. 54, nos. 13–14, pp. 2095–2102. https://doi.org/10.1016/S0009-2509(98)00300-5

  6. Azarhoosh, M.J., Ebrahim, H.A., and Pourtarah, S.H., Simulating and optimizing auto-thermal reforming of methane to synthesis gas using a non-dominated sorting genetic algorithm II method, Chem. Eng. Commun., 2016, vol. 203, no. 1, pp. 53–63. https://doi.org/10.1080/00986445.2014.942732

    Article  CAS  Google Scholar 

  7. Rowshanzamir, S., Safdarnejad, S.M., and Eikani, M.H., A CFD model for methane autothermal reforming on Ru/γ-Al2O3 catalyst, Procedia Eng., 2012, vol. 42, pp. 2–24. https://doi.org/10.1016/j.proeng.2012.07.390

    Article  CAS  Google Scholar 

  8. Halabi, M.H., de Croon, M.H.J.M., van der Schaaf, J., Cobden, P.D., and Schouten, J.C., Modeling and analysis of autothermal reforming of methane to hydrogen in a fixed bed reformer, Chem. Eng. J., 2008, vol. 137, no. 3, pp. 568–578. https://doi.org/10.1016/j.cej.2007.05.019

    Article  CAS  Google Scholar 

  9. Ding, L.P. and Wang, Z., Inorganic membranes for hydrogen production from the water–gas shift reaction: Materials, reactor design, and simulation, Chem. Prod. Process Model., 2011, vol. 6, no. 1. doi.org/https://doi.org/10.2202/1934-2659.1551

  10. Tsuru, T., Morita, T., Shintani, H., Yoshioka, T., and Asaeda, M., Membrane reactor performance of steam reforming of methane using hydrogen-permselective catalytic SiO2 membranes, J. Membr. Sci., 2008, vol. 316, nos. 1–2, pp. 53–62. https://doi.org/10.1016/j.memsci.2007.10.057

  11. Lu, N. and Xie, D., Novel membrane reactor concepts for hydrogen production from hydrocarbons: A review, Int. J. Chem. React. Eng., 2016, vol. 14, no. 1, pp. 1–31. https://doi.org/10.1515/ijcre-2015-0050

    Article  CAS  Google Scholar 

  12. Karimipourfard, D., Nemati, N., Bayat, M., Samimi, F., and Rahimpour, M.R., Mathematical modeling and optimization of syngas production process: A novel axial flow spherical packed bed tri-reformer, Chem. Prod. Process Model., 2018, vol. 13, no. 2, article no. 20170031. https://doi.org/10.1515/cppm-2017-0031

    Article  CAS  Google Scholar 

  13. Chen, Z, Yan, Y., and Elnashaie, S.S.E.H., Novel circulating fast fluidized-bed membrane reformer for efficient production of hydrogen from steam reforming of methane, Chem. Eng. Sci., 2003, vol. 58, no. 19, pp. 4335–4349. https://doi.org/10.1016/S0009-2509(03)00314-2

    Article  CAS  Google Scholar 

  14. Goeke, R.S. and Datye, A.K., Model oxide supports for studies of catalyst sintering at elevated temperatures, Top. Catal., 2007, vol. 46, nos. 1–2, pp. 3–9. https://doi.org/10.1007/s11244-007-0309-5

  15. Iulianelli, A., Liguori, S., Wilcox, J., and Basile, A., Advances on methane steam reforming to produce hydrogen through membrane reactors technology: A review, Catal. Rev., 2016, vol. 58, no. 1, pp. 1–35. https://doi.org/10.1080/01614940.2015.1099882

    Article  CAS  Google Scholar 

  16. Ghasemzadeh, K., Zeynali, R., Ahmadnejad, F., Babalou, A.A., and Basile, A., Investigation of palladium membrane reactor performance during ethanol steam reforming using CFD method, Chem. Prod. Process Model., 2016, vol. 11, no. 1, pp. 51–55. https://doi.org/10.1515/cppm-2015-0056

    Article  CAS  Google Scholar 

  17. Ryi, S.-K., Park, J.-S., Kim, D.-K., Kim, T.-H., and Kim S.-H., Methane steam reforming with a novel catalytic nickel membrane for effective hydrogen production, J. Membr. Sci., 2009, vol. 339, nos. 1–2, pp. 189–194. https://doi.org/10.1016/j.memsci.2009.04.047

  18. Adris, A.M., Lim, C.J., and Grace, J.R., The fluidized-bed membrane reactor for steam methane reforming: Model verification and parametric study, Chem. Eng. Sci., 1997, vol. 52, no. 10, pp. 1609–1622. https://doi.org/10.1016/S0009-2509(96)00511-8

    Article  CAS  Google Scholar 

  19. Lu, N., Gallucci, F., Melchiori, T., Xie, D., and Van Sint Annaland, M., Modeling of autothermal reforming of methane in a fluidized bed reactor with perovskite membranes, Chem. Eng. Process., 2018, vol. 124, pp. 308–318. https://doi.org/10.1016/j.cep.2017.07.010

    Article  CAS  Google Scholar 

  20. Hoseinzade, L. and Adams, T.A. II, Modeling and simulation of an Integrated steam reforming and nuclear heat system, Int. J. Hydrogen Energy, 2017, vol. 42, no. 39, pp. 25048–25062. https://doi.org/10.1016/j.ijhydene.2017.08.031

    Article  CAS  Google Scholar 

  21. Hoseinzade, L, and Adams, T.A. II, Dynamic modeling of integrated mixed reforming and carbonless heat systems, Ind. Eng. Chem. Res., 2018, vol. 57, no. 17, pp. 6013–6023. https://doi.org/10.1021/acs.iecr.7b03726

    Article  CAS  Google Scholar 

  22. Dehkordi, A.M., and Memari, M., Compartment model for steam reforming of methane in a membrane-assisted bubbling fluidized-bed reactor, Int. J. Hydrogen Energy, 2009, vol. 34, no. 3, pp. 1275–1291. https://doi.org/10.1016/j.ijhydene.2008.11.076

    Article  CAS  Google Scholar 

  23. Prasad, P. and Elnashaie, S.S.H.E., Coupled steam and oxidative reforming for hydrogen production in a novel membrane circulating fluidized-bed reformer, Ind. Eng. Chem. Res., 2003, vol. 42, no. 20, pp. 4715–4722. https://doi.org/10.1021/ie030071h

    Article  CAS  Google Scholar 

  24. Akers, W.W. and Camp, D.P., Kinetics of the methane steam reaction, AIChE J., 1955, vol. 1, no. 4, pp. 471–475. https://doi.org/10.1002/aic.690010415

    Article  CAS  Google Scholar 

  25. Allen, D.W., Gerhard, E.R., and Likins, M.P., Jr., Kinetics of the methane–steam reaction, Ind. Eng. Chem. Process., 1975, vol. 14, no. 3, pp. 256–259. https://doi.org/10.1021/i260055a010

    Article  CAS  Google Scholar 

  26. Aparicio, L.M., Transient isotopic studies and microkinetic modeling of methane reforming over nickel catalysts, J. Catal., 1997, vol. 165, no. 2, pp. 262–274. https://doi.org/10.1006/jcat.1997.1468

    Article  CAS  Google Scholar 

  27. Xu, J. and Froment, G.F., Methane steam reforming, methanation and water–gas shift : I. Intrinsic kinetics, AIChE J., 1989, vol. 35, no. 1, pp. 88–96. https://doi.org/10.1002/aic.690350109

    Article  CAS  Google Scholar 

  28. Luna, A.E.C. and Becerra, A.M., Kinetics of methane steam reforming on a Ni on alumina–titania catalyst, React. Kinet. Catal. Lett., 1997, vol. 61, no. 2, pp. 369–374. https://doi.org/10.1007/BF02478395

    Article  CAS  Google Scholar 

  29. Gallucci, F., Paturzo, L., Famà, A., and Basile, A., Experimental study of the methane steam reforming reaction in a dense Pd/Ag membrane reactor, Ind. Eng. Chem. Res., 2004, vol. 43, no. 4, pp. 928–933. https://doi.org/10.1021/ie030485a

    Article  CAS  Google Scholar 

  30. Trimm, D.L. and Lam, C.-W., The combustion of methane on platinum–alumina fibre catalysts—II design and testing of a convective–diffusive type catalytic combustor, Chem. Eng. Sci., 1980, vol. 35, no. 8, pp. 1731–1739. https://doi.org/10.1016/0009-2509(80)85008-1

    Article  CAS  Google Scholar 

  31. Rakib, M.A. and Alhumaizi, K.I., Modeling of a fluidized bed membrane reactor for the steam reforming of methane : Advantages of oxygen addition for favorable hydrogen production, Energy Fuels, 2005, vol. 19, no. 6, pp. 2129–2139. https://doi.org/10.1021/ef050096o

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Both the author has equal contribution on the work.

Corresponding author

Correspondence to Ravikant R. Gupta.

Ethics declarations

Author’s doesn’t have any conflicts of interest to declare.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R.R., Agarwal, R. Mathematical Modeling and Simulation of Methane Steam Reforming Membrane Reactor. Theor Found Chem Eng 57, 957–966 (2023). https://doi.org/10.1134/S004057952305041X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057952305041X

Keywords:

Navigation