Skip to main content
Log in

Liquid and Gas Hydrodynamics in Film Regular Sprayed Packings in a Cocurrent Downflow Regime

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The work considers the hydrodynamics in contemporary packed film devices with tubular and plane channels and laminar and turbulent gas- and liquid-flow patterns in a downflow cocurrent regime. Weak hydrodynamic interaction between the phases and no velocity circulation in the gas phase are assumed. The solution is found by the approximate Schlichting method. The distribution of velocities in the phases, the thickness of the downflowing film, and the sizes of the inlet hydrodynamic areas in the liquid and gas are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Babak, V.N., Kholpanov, L.P., Malyusov, V.A., and Zhavoronkov, N.M., Heat- and mass transfer between a liquid film and gas in countercurrent and concurrent modes with piston motion of the phases, Teor. Osn. Khim. Tekhnol., 1978, vol. 12, no. 1, pp. 3–10.

    Google Scholar 

  2. Kenig, E.Ya., Mass transfer-reaction coupling in two-phase multicomponent fluid systems, Chem. Eng. J., 1995, vol. 57, no. 2, pp. 189–204. https://doi.org/10.1016/0923-0467(94)02934-2

    Article  CAS  Google Scholar 

  3. Babak, V.N., Absorption of gases by aqueous solutions of acids and alkalis, Theor. Found. Chem. Eng., 2005, vol. 39, no. 2, pp. 141–150. https://doi.org/10.1007/s11236-005-0055-y

    Article  CAS  Google Scholar 

  4. Babak, V.N., Absorption of inorganic gases by aqueous solutions of salts, primary amines and ammonia, Theor. Found. Chem. Eng., 2005, vol. 39, no. 4, pp. 367–378. https://doi.org/10.1007/s11236-005-0089-1

    Article  CAS  Google Scholar 

  5. Babak, V.N. and Babak, T.B., The optimum conditions for vacuum desorption (maximum pressure, minimum irrigation density), Teor. Osn. Khim. Tekhnol., 2012, vol. 46, no. 4, pp. 406–419.

    Google Scholar 

  6. Plesovskikh, V.A., Bezdenezhnyi, A.A., and Polosin, A.N., Modelling the process of distillation with water vapor for multicomponent mixtures of higher fatty acids, Zh. Prikl. Khim., 2002, vol. 75, no. 1, pp. 90–94.

    CAS  Google Scholar 

  7. Klyuiko, V.V., Kholpanov, L.P., Ziberg, G.K., and Stavitskii, V.A., Development, implementation and analysis of the work of packed columns with spatially structured regular contact devices, Khim. Tekhnol., 2004, no. 9, pp. 40–47.

  8. Rozen, A.M. and Kostanyan, A.E., Scaling-up effect in chemical engineering, Theor. Found. Chem. Eng., 2002, vol. 36, no. 4, pp. 307–313. https://doi.org/10.1023/A:1019877029219

    Article  CAS  Google Scholar 

  9. Nusselt, W., Die oberflächenkondensation des wasserdampfes, Z. Ver. Dtsch. Ing. Maschinenbau Metallbearb., 1916, vol. 60, no. 27, pp. 541–546.

    Google Scholar 

  10. Zhavoronkov, N.M., Malyusov, V.A., and Malafeev, M.A., Mass transfer in the process of film absorption, Khim. Prom-st., 1951, no. 8, pp. 240–245.

  11. Brauer, H., Stromung und warmenbergang bei rieselfilmen, Ver. Dtsch. Ing. Forschungsh., 1956, vol. 22, no. 457, pp. 40–49.

    Google Scholar 

  12. Ducler, A.E., Dynamics of vertical falling film system, Chem. Eng. Prog., 1959, vol. 55, no. 10, pp. 62–67.

    Google Scholar 

  13. Wilkes, J.O. and Nedderman, R.M., The measurement of velocities in thin films of liquid, Chem. Eng. Sci., 1962, vol. 17, no. 3, pp. 177–187. https://doi.org/10.1016/0009-2509(62)80029-3

    Article  CAS  Google Scholar 

  14. Tananaiko, Yu.M. and Vorontsov, E.G., Metody rascheta i issledovaniya plenochnykh plenochnykh processov (Methods of Calculation and Research of Film Processes), Kiev: Tekhnika, 1975.

  15. Boyadjiev, C. and Beschkov, V., Mass Transfer in Liquid Film Flows, Sofia: Publ. House Bulg. Acad. Sci., 1984.

    Google Scholar 

  16. Gimbutis, G-S.I., Teploobmen pri gravitatsionnom techenii plenki zhidkosti (Heat Transfer during Gravitational Fluid Film), Zhukauskas, A., Ed., Vil’nyus: Mokslas, 1988.

  17. Kholpanov, L.P. and Shkadov, V.Ya., Gidrodinamika i teplomassoobmen s poverkhnost’yu razdela faz (Hydrodynamics and Heat and Mass Transfer with the Inteface), Malyusov, V.A., Ed., Moscow: Nauka, 1990.

    Google Scholar 

  18. Alekseenko, S.V., Nakoryakov, V. E., and Pokusaev, B.G., Volnovoe techenie plenok zhidkosti (Wave Flow of Liquid Films), Novosibirsk: Nauka, 1992.

  19. Hassan, N.A., Laminar flow along a vertical wall, J. Appl. Mech., 1967, vol. 34, no. 3, pp. 535–537. https://doi.org/10.1115/1.3607739

    Article  Google Scholar 

  20. Cerro, R.L. and Whitaker, S., Entrance region flow with a free surface: the falling liquid film, Chem. Eng. Sci., 1971, vol. 26, no. 6, pp. 785–798. https://doi.org/10.1016/0009-2509(71)83040-3

    Article  CAS  Google Scholar 

  21. Vorontsov, E.G. and Yakhno, D.M., Local thickness of the irrigated film at the inlet section, Prikl. Mekh. Tekh. Fiz., 1974, no. 4, pp. 64–67.

  22. Stücheli, A. and Özişik, M.N., Hydrodynamics entrance lengths of laminar falling films, Chem. Eng. Sci., 1976, vol. 31, no. 5, pp. 369–372. https://doi.org/10.1016/0009-2509(76)80006-1

    Article  Google Scholar 

  23. Kholpanov, L.P., Shkadov, V.Ya., Malyusov, V.A., and Zhavoronkov, N.M., Studies on hydrodynamics and mass exchange in the fluid film, taking into account the input area, Teor. Osn. Khim. Tekhnol., 1976, vol. 10, no. 5, pp. 659–669.

    CAS  Google Scholar 

  24. Vorontsov, E.G. and Gindzyuk, Yu.M., Study on the velocity field in the initial section of film flow, Inzh.-Fiz. Zh., 1986, vol. 50, no. 6, pp. 913–920.

    Google Scholar 

  25. Ainshtein, V.G. and Zakharov, M.K., Estimation of the length of the hydrodynamic stabilization section during gravitational flow of a liquid film, Teor. Osn. Khim. Tekhnol., 1990, vol. 24, no. 3, pp. 395–397.

    CAS  Google Scholar 

  26. Vorontzov, E.G., Hydrodynamics and heat transfer in irrigating films of chemical equipment, Extended Abstract of Doctoral (Eng.) Dissertation, Moscow: IGIC RAS, 1989.

  27. Schlichting, H., Laminare kanaleinlaufströmung, Z. Angew. Math. Mech., 1934, vol. 14, pp. 368–373.

    Google Scholar 

  28. Langhaar, H.L., Steady flow in the transition length of a straight tube, J. Appl. Mech., 1942, vol. 9, no. 2, pp. A55–A58. https://doi.org/10.1115/1.4009183

    Article  Google Scholar 

  29. Vorotilin, V.P., Kulov, N.N., and Malyusov, V.A., Numerical calculation on a computer of the gas velocity field for laminar flow in the inlet section of the pipe, Teor. Osn. Khim. Tekhnol., 1974, vol. 8, no. 4, pp. 543–

    Google Scholar 

  30. Ramm, V.M., Absorbtsiya gazov (Absorption of Gases), Moscow: Khimiya, 1976.

  31. Hewitt, G.F. and Hall-Taylor, N.S., Annular Two-Phase Flow, Oxford: Pergamon, 1970.

    Google Scholar 

  32. Reynolds, A.J., Turbulent Flows in Engineering, London: Wiley, 1974.

    Google Scholar 

  33. Voinov, N.A. and Nikolaev, N.A., Plenochnye trubchatye gazozhidkostnye reaktory (gidrodinamika, teplo- i massoobmen) (Film Tubular Gas–Liquid Reactors (Hydrodynamics, Heat- and Mass Transfer)), Kazan’: Otechestvo, 2008.

  34. Gogonin, I.I., Heat exchange at vaporization and boiling of film spraying horizontal pipe bundle, Theor. Found. Chem. Eng., 2014, vol. 48, no. 1, pp. 96–103. https://doi.org/10.1134/S0040579513060043

    Article  CAS  Google Scholar 

  35. Semenov, I.A., Ulyanov, B.A., and Kulov, N.N., Study of liquid flows induced by vibration of a flat plate, Theor. Found. Chem. Eng., 2013, vol. 47, no. 4, pp. 315–320. https://doi.org/10.1134/S0040579513040283

    Article  CAS  Google Scholar 

  36. Lapshin, O.V. and Smolyakov, V.K., Estimation of kinetic constants for reactions in thin films, Theor. Found. Chem. Eng., 2013, vol. 47, no. 6, pp. 676–681. https://doi.org/10.1134/S0040579513060067

    Article  CAS  Google Scholar 

  37. Babak, V.N., Heat- and mass transfer in two-phase systems with a fixed phase contact surface, Extended Abstract of Doctoral (Phys.–Math.) Dissertation, Ivanovo: ISUCT, 2014.

  38. Konobeev, B.I., Hydrodynamics and mass transfer in liquid films at high gas velocities, Extended Abstract of Cand. (Chem.) Dissertation, Moscow: NIFKhI, 1958

  39. Nikolaev, N.A., Dinamika plenochnogo techeniya zhidkosti i massoperenos v usloviyakh sil’nogo vzaimodeistviya s gazom (parom) pri odnonapravlennom voskhodyashchem i niskhodyashchem dvizhenii (Dynamics of Liquid Film Flow and Mass Transfer under Conditions of Strong Interaction with Gas (Steam) with Unidirectional Upward or Downward Movement), Kazan’: Otechestvo, 2011.

  40. Schlichting, H., Boundary Layer Theory, New York: McGraw-Hill, 1960. Kamke, E., Differentialgleichungen LÖsungsmethoden und LÖsungen, Handbook of Ordinary Differential Equations, New York: Chelsea Publisher Company, 1948, Vol. 1.

  41. Gradshtein, I.S. and Ryzhik, I.M., Tablitsy integralov, summ i proizvedenii (Tables of Integrals, Rows, and Products), Moscow: Fizmatgiz, 1963.

  42. Kasatkin, A.G., Osnovnye protsessy i apparaty khimicgeskoi tekhnologii (Basic Processes and Apparatuses of Chemical Technology), Moscow: Khimiya, 1973.

  43. Malyusov, V.A., Myasnikov, S.K., and Kulov, N.N., Hydraulic resistance when moving in a pipe with an irrigated wall, Teor. Osn. Khim. Tekhnol., 1973, vol. 7, no. 4, p. 524.

    CAS  Google Scholar 

  44. Myasnikov, S.K., Studies on hydrodynamics of two-phase flow in pipes with an irrigated wall, Extended Abstract Cand. (Eng.) Dissertation, Moscow: IGIC RAS, 1977.

  45. Sherwood, T.K., Pigford, R.L., and Wilkie, C.R., Mass Transfer, New York: McGraw-Hill Publ., 1975.

    Google Scholar 

  46. Babak, V.N. and Kvurt, Yu.P., Mass transfer in irrigated plane-parallel channels for cocurrent laminar flow of liquid and gas, Chem. Eng. Commun., 2020, vol. 208, no. 7, pp. 1017–1040. https://doi.org/10.1080/00986445.2020.1743693

    Article  CAS  Google Scholar 

Download references

Funding

This study was accomplished within the Program of Fundamental Research of the State Academies of Sciences for the Federal Research Center for Problems of Chemical Physics and Medical Chemistry (project no. no. 0089-2019-0018, state registration no. AAA-A19-119022690098-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. N. Babak or N. N. Kulov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Glushachenkova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babak, V.N., Kulov, N.N. Liquid and Gas Hydrodynamics in Film Regular Sprayed Packings in a Cocurrent Downflow Regime. Theor Found Chem Eng 57, 791–807 (2023). https://doi.org/10.1134/S0040579523050354

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523050354

Keywords:

Navigation