Skip to main content
Log in

Extractive Distillation of the Tetrahydrofuran–Acetonitrile–Chloroform Mixture

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The vapor–liquid equilibrium of the tetrahydrofuran–acetonitrile system, the equimolar tetrahydrofuran–acetonitrile–chloroform mixture is experimentally studied. The effect of various amounts of dimethyl sulfoxide on the relative volatilities of the components at 101.32 kPa is investigated. The extractive distillation flowsheets of the tetrahydrofuran–acetonitrile–chloroform mixture with dimethyl sulfoxide are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Serafimov, L.A. and Frolkova, A.K., Fundamental principle of concentration-field redistribution between separation regions as a basis for the design of technological systems, Theor. Found. Chem. Eng., 1997, vol. 31, no. 2, pp. 159–166.

    CAS  Google Scholar 

  2. Frolkova, A.K., Razdelenie azeotropnykh smesei: Fiziko-khimicheskie osnovy i tekhnologicheskie priemy (Separation of Azeotropic Mixtures: Physicochemical Principles and Techniques), Moscow: VLADOS, 2010.

  3. Mahdi, T., Ahmad, A., Nasef, M.M., and Ripin, A., State-of-the-art technologies for separation of azeotropic mixtures, Sep. Purif. Rev., 2015, vol. 44, no. 4, pp. 308–330. https://doi.org/10.1080/15422119.2014.963607

    Article  CAS  Google Scholar 

  4. Zaretskii, M.I., Rusak, V.V., and Chartov, E.M., Extractive distillation in chemical technology: A review, Coke Chem., 2010, vol. 53, no. 3, pp. 110–113. https://doi.org/10.3103/S1068364X10030075

    Article  Google Scholar 

  5. Bittrikh, G.I., Gaile, A.A., Lempe, D., Proskuryakov, V.A., and Semenov, L.V., Razdelenie uglevodorodov s ispol’zovaniem selektivnykh rastvoritelei (Separation of Hydrocarbons by Using Selective Solvents), Leningrad: Khimiya, 1987.

  6. Gaile, A.A. and Zalishchevskii, G.D., N-metilpirrolidon: poluchenie, svoistva i primenenie v kachestve selektivnogo rastvoritelya (N-Methylpyrrolidone: Preparation, Properties and Application as Selective Solvent), St. Petersburg: Khimizdat, 2005.

  7. Lei, Z., Li, C., and Chen, B., Extractive distillation: A review, Sep. Purif. Rev., 2003, vol. 32, no. 2, pp. 121–213. https://doi.org/10.1081/SPM-120026627

    Article  CAS  Google Scholar 

  8. Kiss, A.A., Distillation. Extractive distillation, in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2013. https://www.researchgate.net/publication/285671337_Distillation_Extractive_Distillation. Cited February, 08, 2023.

  9. Gerbaud, V., Rodriguez-Donis, I., Hegely, L., Lang, P., Denes, F., and You, X., Review of extractive distillation. Process design, operation, optimization and control, Chem. Eng. Res. Des., 2019, vol. 141, pp. 229–271. https://doi.org/10.1016/j.cherd.2018.09.020

    Article  CAS  Google Scholar 

  10. Teng, Z., Zhen, S., Xiang, Z., Rafiqul, G., and Kai, S., Optimal solvent design for extractive distillation processes: A multiobjective optimization-based hierarchical framework, Ind. Eng. Chem. Res., 2019, vol. 58, no. 15, pp. 5777–5786. https://doi.org/10.1021/acs.iecr.8b04245

    Article  CAS  Google Scholar 

  11. Anokhina, E.A., Energy saving in extractive distillation, Fine Chem. Technol., 2013, vol. 8, no. 5, pp. 3–19.

    CAS  Google Scholar 

  12. Momoh, S.O., Assessing the accuracy of selectivity as a basis for solvent screening in extractive distillation processes, Sep. Sci. Technol., 1991, vol. 26, no. 5, pp. 729–742. https://doi.org/10.1080/01496399108049911

    Article  CAS  Google Scholar 

  13. Raeva, V.M. and Sazonova, A.Yu., Separation of ternary mixtures by extractive distillation with 1,2-ethandiol and glycerol, Chem. Eng. Res. Des., 2015, vol. 99, pp. 125–131. https://doi.org/10.1016/j.cherd.2015.04.032

    Article  CAS  Google Scholar 

  14. Raeva, V.M. and Kapranova, A.S., Comparison efficiency of extractive agents at the separation of mixture acetone–methanol, Khim. Prom-st. Segodnya, 2015, no. 3, pp. 33–46.

  15. Myul'khi, E.P., Khristenko, M.S., and Andryukhova, M.V., Choice of an extractive separating agent for the 1-pentanol–cyclohexanone binary mixture, Russ. J. Appl. Chem., 2006, vol. 79, no. 7, pp. 1076–1082. https://doi.org/10.1134/S1070427206070068

    Article  CAS  Google Scholar 

  16. Song, Y., Du, Y., Wang, R., Yan, H., Luo, F., and Sun, L., Vapor–liquid equilibria and conceptual design of extractive distillation for separating ethanol and ethyl propionate, J. Chem. Eng. Data, 2020, vol. 65, no. 7, pp. 3428–3437. https://doi.org/10.1021/acs.jced.9b01162

    Article  CAS  Google Scholar 

  17. Kogan, V.B., Azeotropnaya i ekstraktivnaya rektifikatsiya (Azeotropic and Extractive Rectification), Leningrad: Khimiya, 1971.

  18. Serafimov, L.A., Frolkova, A.K., and Bushina, D.I., Extractive distillation of binary azeotropic mixtures, Theor. Found. Chem. Eng., 2008, vol. 42, no. 5, pp. 507–516. https://doi.org/10.1134/S0040579508050059

    Article  CAS  Google Scholar 

  19. Kossack, S., Kraemer, K., Gani, R., and Marquardt, W.A., A systematic synthesis framework for extractive distillation processes, Chem. Eng. Res. Des., 2008, vol. 86, no. 7, pp. 781–792. https://doi.org/10.1016/j.cherd.2008.01.008

    Article  CAS  Google Scholar 

  20. Benyounes, H. and Frolkova, A.K., Aspects of multicomponent mixture separation in the presence of selective solvents, Chem. Eng. Commun., 2010, vol. 197, no. 7, pp. 901–918. https://doi.org/10.1080/00986440903088561

    Article  CAS  Google Scholar 

  21. Raeva, V.M. and Sukhov, D.I., Selection of extractive agents for the separation of chloroform–methanol–tetrahydrofuran mixture, Fine Chem. Technol., 2018, vol. 13, no. 3, pp. 30–40. https://doi.org/10.32362/24106593-2018-13-3-30-40

    Article  CAS  Google Scholar 

  22. Frolkova, A.K., Frolkova, A.V., Raeva, V.M., and Zhuchkov, V.I., Features of distillation separation of multicomponent mixtures, Fine Chem. Technol., 2022, vol. 17, no. 2, pp. 87–106. https://doi.org/10.32362/2410-6593-2022-17-2-87-106

    Article  CAS  Google Scholar 

  23. Kiva, V.N., Hilmen, E.K., and Skogestad, S., Azeotropic phase equilibrium diagrams: A survey, Chem. Eng. Sci., 2003, vol. 58, no. 10, pp. 1903–1953. https://doi.org/10.1016/S0009-2509(03)00018-6

    Article  CAS  Google Scholar 

  24. Raeva, V.M. and Sazonova, A.Yu., Separation of ternary mixtures by extractive distillation with 1,2-ethandiol and glycerol, Chem. Eng. Res. Des., 2015, vol. 99, pp. 125–131. https://doi.org/10.1016/j.cherd.2015.04.032

    Article  CAS  Google Scholar 

  25. Wang, Yi., Bu, G., Geng, X., Zhu, Z., Cui, P., and Liao, Z., Design optimization and operating pressure effects in the separation of acetonitrile/methanol/water mixture by ternary extractive distillation, J. Cleaner Prod., 2019, vol. 218, pp. 212–224. https://doi.org/10.1016/j.jclepro.2019.01.324

    Article  CAS  Google Scholar 

  26. Raeva, V.M. and Dubrovsky, A.M., Comparison of extractive distillation flowsheets for methanol–tetrahydrofuran–water mixtures, Fine Chem. Technol., 2020, vol. 15, no. 3, pp. 21–30. https://doi.org/10.32362/2410-6593-2020-15-3-21-30

    Article  CAS  Google Scholar 

  27. Zhu, Z., Wang, Y., Hu, J., Qi, X., and Wang, Y., Extractive distillation process combined with decanter for separating ternary azeotropic mixture of toluene–methanol–water, Chem. Eng. Trans., 2017, vol. 61, pp. 763–768. https://doi.org/10.3303/CET1761125

    Article  Google Scholar 

  28. Yang, A., Su, Y., Shi, T., Ren, J., Shen, W., and Zhou, T., Energy-efficient recovery of tetrahydrofuran and ethyl acetate by triple-column extractive distillation: Entrainer design and process optimization, Front. Chem. Sci. Eng., 2022, vol. 16, no. 2, pp. 303–315. https://doi.org/10.1007/s11705-021-2044-z

    Article  CAS  Google Scholar 

  29. Shi, X., Zhu, X., Zhao, X., and Zhang, Z., Performance evaluation of different extractive distillation processes for separating ethanol/tert-butanol/water mixture, Process Saf. Environ. Prot., 2020, vol. 137, pp. 246–260. https://doi.org/10.1016/j.psep.2020.02.015

    Article  CAS  Google Scholar 

  30. Raeva, V.M. and Gromova, O.V., Separation of water–formic acid–acetic acid mixtures in the presence of sulfolane, Fine Chem. Technol., 2019, vol. 14, no. 4, pp. 24–32. https://doi.org/10.32362/2410-6593-2019-14-4-24-32

    Article  CAS  Google Scholar 

  31. Yang, A., Zou, H., Chien, I.-L., Wang, D., Wei, S., Ren, J., and Shen, W., Optimal design and effective control of triple-column extractive distillation for separating ethyl acetate/ethanol/water with multiazeotrope, Ind. Eng. Chem. Res., 2019, vol. 58, no. 17, pp. 7265–7283. https://doi.org/10.1021/acs.iecr.9b00466

    Article  CAS  Google Scholar 

  32. Jian, X., Li, J., Ye, Q., Yan, L., Li, X., Xie, L., and Zhang, J., Intensification and analysis of extractive distillation processes with preconcentration for separating ethyl acetate, isopropanol and water azeotropic mixtures, Sep. Purif. Technol., 2022, vol. 287, article no. 120499. https://doi.org/10.1016/j.seppur.2022.120499

    Article  CAS  Google Scholar 

  33. Ma, Z., Yao, D., Zhao, J., Li, H., Chen, Z., Cui, P., Zhu, Z., Wang, L., Wang, Y., Ma, Y., and Gao, L., Efficient recovery of benzene and n-propanol from wastewater via vapor recompression assisted extractive distillation based on techno-economic and environmental analysis, Process Saf. Environ. Prot., 2021, vol. 148, pp. 462–472. https://doi.org/10.1016/j.psep.2020.10.033

    Article  CAS  Google Scholar 

  34. Shan, B., Zheng, Qi., Chen, Z., Shen, Y., Zhang, F., Wang, Y., and Zhu, Z., Dynamic control and performance comparison of conventional and dividing wall extractive distillation for benzene/isopropanol/water separation, J. Taiwan Inst. Chem. Eng., 2021, vol. 128, pp. 73–86. https://doi.org/10.1016/j.jtice.2021.08.005

    Article  CAS  Google Scholar 

  35. Yang, A., Chun, W., Sun, S., Shi, T., Ren, J., and Shen, W., Dynamic study in enhancing the controllability of an energy-efficient double side-stream ternary extractive distillation of acetonitrile/methanol/benzene with three azeotropes, Sep. Purif. Technol., 2020. vol. 242, article no. 116830. https://doi.org/10.1016/j.seppur.2020.116830

    Article  CAS  Google Scholar 

  36. Zhao, Y., Zhao, T., Jia, H., Li, X., Zhu, Z., and Wang, Y., Optimization of the composition of mixed entrainer for economic extractive distillation process in view of the separation of tetrahydrofuran/ethanol/water ternary azeotrope, J. Chem. Technol. Biotechnol., 2017, vol. 92, no. 9, pp. 2433–2444. https://doi.org/10.1002/jctb.5254

    Article  CAS  Google Scholar 

  37. Zhao, Y., Ma, K., Bai, W., Du, D., Zhu, Z., Wang, Y., Gao, J., Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol, Energy, 2018, vol. 148, pp. 296–308. https://doi.org/10.1016/j.energy.2018.01.161

    Article  CAS  Google Scholar 

  38. Berg, L., Yeh, A.-I., and Ratanapupech, P., The recovery of ethyl acetate by extractive distillation, Chem. Eng. Commun., 1985, vol. 39, nos. 1–6, pp. 193–199. https://doi.org/10.1080/00986448508911670

  39. Berg, L. and Yeh, A.-I., The breaking of ternary acetate–alcohol–water azeotropes by extractive distillation, Chem. Eng. Commun., 1986, vol. 48, nos. 1–3, pp. 93–101. https://doi.org/10.1080/00986448608911779

  40. Raeva, V.M. and Stoyakina, I.E., Selecting extractive agents on the basis of composition–excess Gibbs energy data, Russ. J. Phys. Chem. A, 2021, vol. 95, no. 9, pp. 1779–1790. https://doi.org/10.1134/S003602442109020X

    Article  CAS  Google Scholar 

  41. Sólimo, H.N. and Gómez Marigliano, A.C., Excess properties and vapor–liquid equilibrium data for the chloroform + tetrahydrofuran binary system at 30°C, J. Solution Chem., 1993, vol. 22, no. 10, pp. 951–962. https://doi.org/10.1007/bf00646606

    Article  Google Scholar 

  42. Nagata, I. and Kawamura, Y., Excess thermodynamic functions and complex formation in binary liquid mixtures containing acetonitrile, Fluid Phase Equilib., 1979, vol. 3, no. 1, pp. 1–11. https://doi.org/10.1016/0378-3812(79)80023-0

    Article  CAS  Google Scholar 

  43. Govindan, A.P., Varma, Y.B.G., and Ananth, M.S., Isothermal (vapor + liquid) equilibria of four binary mixtures, J. Chem. Thermodyn., 1984, vol. 16, no. 1, pp. 1–5. https://doi.org/10.1016/0021-9614(84)90068-5

    Article  CAS  Google Scholar 

  44. Lazarte, M., Gómez Marigliano, A.C., and Sólimo, H.N., Excess molar volume, viscosity, and molar refraction deviations, and liquid–vapor equilibrium at 303.15 K for chloroform + acetonitrile binary mixture. An infrared study, J. Solution Chem., 2004, vol. 33, no. 12, pp. 1549–1563. https://doi.org/10.1007/s10953-004-1393-9

    Article  CAS  Google Scholar 

  45. Gmehling, J. and Bölts, R., Azeotropic data for binary and ternary systems at moderate pressures, J. Chem. Eng. Data, 1996, vol. 41, no. 2, pp. 202–209. https://doi.org/10.1021/je950228f

    Article  CAS  Google Scholar 

  46. Ogorodnikov, S.K. Lesteva, T.M., and Kogan, V.B., Azeotropnye smesi. Spravochnik (Azeotropic Mixtures. Handbook), Kogan, V.B. Ed., Leningrad: Khimiya, 1971.

    Google Scholar 

  47. Susarev, M.P., Kudryavtseva L.S., and Eizen O.G., Troinye azeotropnye sistemy (Ternary Azeotropic Systems), Tallinn: Valgus, 1973.

  48. Frolkova, A.V., Fertikova, V.G., Rytova, E.V., and Frolkova, A.K., Evaluation of the adequacy of phase equilibria modeling based on various sets of experimental data, Fine Chem. Technol., 2021, vol. 16, no. 6, pp. 457–464. https://doi.org/10.32362/2410-6593-2021-16-6-457-464

    Article  CAS  Google Scholar 

  49. Swietoslawski, W., Azeotropy and Polyazeotropy, Oxford: Pergamon Press, 1963.

    Google Scholar 

  50. Sun, Y., Fu, D., Ma, S., Ma, Z., and Sun, L., Isobaric vapor–liquid equilibrium data for two binary systems n-hexane + 1,2-dimethoxyethane and methylcyclopentane + 1,2-dimethoxyethane at 101.3 kPa. J. Chem. Eng. Data, 2018, vol. 63, no. 2, pp. 395–401. https://doi.org/10.1021/acs.jced.7b00802

    Article  CAS  Google Scholar 

  51. Song, Y., Du, Y., Wang, R., Yan, H., Luo, F., and Sun, L., Vapor–liquid equilibria and conceptual design of extractive distillation for separating ethanol and ethyl propionate, J. Chem. Eng. Data, 2020, vol. 65, no. 7, pp. 3428–3437. https://doi.org/10.1021/acs.jced.9b01162

    Article  CAS  Google Scholar 

  52. Herington, E.F.G., Tests for the consistency of experimental isobaric vapour–liquid equilibrium data, J. Inst. Petrol., 1951, vol. 37, pp. 457–470.

    CAS  Google Scholar 

  53. Walas, S.M., Phase Equilibria in Chemical Engineering, Boston: Butterworth-Heinemann, 1985.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-19-00620-p).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Raeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuchkov, V.I., Ryzhkin, D.A. & Raeva, V.M. Extractive Distillation of the Tetrahydrofuran–Acetonitrile–Chloroform Mixture. Theor Found Chem Eng 57, 119–129 (2023). https://doi.org/10.1134/S0040579523010153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523010153

Keywords:

Navigation