Skip to main content
Log in

Ultrasound Assistant Deep-Eutectic-Solvent-Based Liquid–Liquid Microextraction for the Determination of Transesterification Catalyst in Biodiesel Samples

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Hydroxides of alkali and alkaline earth metals are most widely used as catalysts for transesterification of triglycerides of fatty acids in biodiesel production. After biodiesel purification, the determination of catalyst residue is performed to prevent their excess accumulation. Catalysts can promote the degradation of biodiesel. In this research, a simple, fast, and environmentally friendly strategy for the sensitive determination of transesterification catalysts (sodium, potassium, calcium, and magnesium) in biodiesel samples by flame atomization atomic absorption spectrometry is developed. The developed procedure is based on ultrasound assistant dispersive liquid–liquid microextraction of the catalysts in a hydrophilic deep eutectic solvent prepared by mixing quaternary ammonium salt and carboxylic acid. The effect of the nature of the deep eutectic solvent on the mass transfer of catalysts is investigated; in addition, the microextraction procedure conditions are optimized to obtain high sensitivity. The limits of detection established for the proposed procedure are 0.03 mg kg–1 for all analytes. No hazardous and volatile organic solvents are required for sample pretreatment. Sample preparation time is less 15 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Singh, D., Sharma, D., Soni, S.L., Sharma, S., Sharma, P.K., and Jhalani, A., A review on feedstocks, production processes, and yield for different generations of biodiesel, Fuel, 2020, vol. 262, article no. 116553. https://doi.org/10.1016/j.fuel.2019.116553

    Article  CAS  Google Scholar 

  2. Van Gerpen, J., Biodiesel processing and production, Fuel Process. Technol., 2005, vol. 86, no. 10, pp. 1097–1107. https://doi.org/10.1016/j.fuproc.2004.11.005

    Article  CAS  Google Scholar 

  3. Knothe, G. and Razon, L.F., Biodiesel fuels, Prog. Energy Combust. Sci., 2017, vol. 58, pp. 36–59. https://doi.org/10.1016/j.pecs.2016.08.001

    Article  Google Scholar 

  4. Chiriac, R. and Apostolescu, N., Emissions of a diesel engine using B20 and effects of hydrogen addition, Int. J. Hydrogen Energy, 2013, vol. 38, no. 30, pp. 13453–13462. https://doi.org/10.1016/j.ijhydene.2013.07.095

    Article  CAS  Google Scholar 

  5. Fabiano, B., Reverberi, A.P., Del Borghi, A., and Dovi, V.G., Biodiesel production via transesterification: Process safety insights from kinetic modeling, Theor. Found. Chem. Eng., 2012, vol. 46, no. 6, pp. 673–680. https://doi.org/10.1134/S0040579512060097

    Article  CAS  Google Scholar 

  6. Kirillov, V.A. and Shigarov, A.B., Biofuels as a promising source of hydrogen for fuel cell power plants, Theor. Found. Chem. Eng., 2016, vol. 50, no. 4, pp. 351–365. https://doi.org/10.1134/S0040579516040369

    Article  CAS  Google Scholar 

  7. Semwal, S., Arora, A.K., Badoni, R.P., and Tuli, D.K., Biodiesel production using heterogeneous catalysts, Bioresour. Technol., 2011, vol. 102, no. 3, pp. 2151–2161. https://doi.org/10.1016/j.biortech.2010.10.080

    Article  CAS  PubMed  Google Scholar 

  8. Song, X., Fu, X., Zhang, C., Huang, W., Zhu, Y., Yang, J., and Zhang, Y., Preparation of a novel carbon based solid acid catalyst for biodiesel production via a sustainable route, Catal. Lett., 2012, vol. 142, no. 7, pp. 869–874. https://doi.org/10.1007/s10562-012-0840-2

    Article  CAS  Google Scholar 

  9. Ranganathan, S.V., Narasimhan, S.L., and Muthukumar, K., An overview of enzymatic production of biodiesel, Bioresour. Technol., 2008, vol. 99, no. 10, pp. 3975–3981. https://doi.org/10.1016/j.biortech.2007.04.060

    Article  CAS  PubMed  Google Scholar 

  10. Shaah, M.A., Hossain, M.S., Allafi, F., Ab Kadir, M. O., and Ahmad, M. I., Biodiesel production from candlenut oil using a non-catalytic supercritical methanol transesterification process: Optimization, kinetics, and thermodynamic studies, RSC Adv., 2022, vol. 12, no. 16, pp. 9845–9861. https://doi.org/10.1039/d2ra00571a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jamil, F., Kumar, P.S.M., Al-Haj, L., Myint, M.T.Z., and Al-Muhtaseb, A. H., Heterogeneous carbon-based catalyst modified by alkaline earth metal oxides for biodiesel production: Parametric and kinetic study, Energy Convers. Manage.: X, 2021, vol. 10, article no. 100047. https://doi.org/10.1016/j.ecmx.2020.100047

    Article  CAS  Google Scholar 

  12. Mahloujifar, M. and Mansournia, M., A comparative study on the catalytic performances of alkali metals-loaded KAlSiO4 for biodiesel production from sesame oil, Fuel, 2021, vol. 291, article no. 120145. https://doi.org/10.1016/j.fuel.2021.120145

    Article  CAS  Google Scholar 

  13. Chanakaewsomboon, I., Phoungthong, K., Palamanit, A., Seechamnanturakit, V., and Cheng, C.K., Biodiesel produced using potassium methoxide homogeneous alkaline catalyst: Effects of various factors on soap formation, Biomass Convers. Biorefin., 2021. https://doi.org/10.1007/s13399-021-01787-1

  14. Santos, T., Gomes, J.F., and Puna, J., Liquid-liquid equilibrium for ternary system containing biodiesel, methanol and water, J. Environ. Chem. Eng., 2018, vol. 6, no. 1, pp. 984–990. https://doi.org/10.1016/j.jece.2017.12.068

    Article  CAS  Google Scholar 

  15. Shishov, A., Trufanov, I., Nechaeva, D., and Bulatov, A., A reversed-phase air-assisted dispersive liquid-liquid microextraction coupled with colorimetric paper-based analytical device for the determination of glycerol, calcium and magnesium in biodiesel samples, Microchem. J., 2019, vol. 150, article no. 104134. https://doi.org/10.1016/j.microc.2019.104134

    Article  CAS  Google Scholar 

  16. De Caland, L.B., Silveira, E.L.C., Tubino, M., Determination of sodium, potassium, calcium and magnesium cations in biodiesel by ion chromatography, Anal. Chim. Acta, 2012, vol. 718, pp. 116–120. https://doi.org/10.1016/j.aca.2011.12.062

    Article  CAS  PubMed  Google Scholar 

  17. Sako, A.V.F., Spudeit, D.A., Dupim, M., Filho, W.P.O., Saint’Pierre, T.D., de Oliveira, M.A.L., Micke, G.A., Dual-opposite end multiple injection method applied to sequential determination of Na+, K+, Ca+2, Mg+2 ions and free and total glycerol in biodiesel by capillary zone electrophoresis, J. Chromatogr. A, 2018, vol. 1570, pp. 148–154. https://doi.org/10.1016/j.chroma.2018.07.079

    Article  CAS  PubMed  Google Scholar 

  18. Pereira, F.M., Brum, D.M., Lepri, F.G., and Cassella, R.J., Extraction induced by emulsion breaking as a tool for Ca and Mg determination in biodiesel by fast sequential flame atomic absorption spectrometry (FS-FAAS) using Co as internal standard, Microchem. J., 2014, vol. 117, pp. 172–177. https://doi.org/10.1016/j.microc.2014.06.026

    Article  CAS  Google Scholar 

  19. Lourenço, E.C., Eyng, E., Bittencourt, P.R.S., Duarte, F.A., Picoloto, R.S., and Flores, É.I.M., A simple, rapid and low cost reversed-phase dispersive liquid-liquid microextraction for the determination of Na, K, Ca and Mg in biodiesel, Talanta, 2019, vol. 199, pp. 1–7. https://doi.org/10.1016/j.talanta.2019.02.054

    Article  CAS  PubMed  Google Scholar 

  20. Nogueira da Silva, K.R., dos Santos Greco, A., Corazza, M.Z., and Raposo Jr., J.L., Feasibility of dispersive liquid-liquid microextraction to determine Ca, Mg, K, and Na in biodiesel by atomic spectrometry, Anal. Methods, 2018, vol. 10, no. 26, pp. 3284–3291. https://doi.org/10.1039/c8ay00770e

    Article  CAS  Google Scholar 

  21. Iqbal, J., Carney, W.A., LaCaze, S., and Theegala, C.S., Metals determination in biodiesel (B100) by ICP-OES with microwave assisted acid digestion, Open Anal. Chem. J., 2010, vol. 4, pp. 18–26. https://doi.org/10.2174/1874065001004010018

    Article  CAS  Google Scholar 

  22. Alves, B.S.F., Carvalho, F.I.M., Cruz, A.S., Dantas Filho, H.A., and Dantas, K.G.F., Determination of Ca, Mg, Na, and K in biodiesel of oilseed from Northern Brazil, Rev. Virtual Quim., 2018, vol. 10, no. 3, pp. 542–550. https://doi.org/10.21577/1984-6835.20180041

    Article  CAS  Google Scholar 

  23. Almeida, J.M.S., Dornellas, R.M., Yotsumoto-Neto, S., Ghisi, M., Furtado, J.G.C., Marques, E.P., Aucélio, R.Q., and Marques, A.L.B., A simple electroanalytical procedure for the determination of calcium in biodiesel, Fuel, 2014, vol. 115, pp. 658–665. https://doi.org/10.1016/j.fuel.2013.07.088

    Article  CAS  Google Scholar 

  24. Lyra, F.H., Carneiro, M.T.W.D., Brandão, G.P., Pessoa, H.M., and de Castro, E.V., Determination of Na, K, Ca and Mg in biodiesel samples by flame atomic absorption spectrometry (FAAS) using microemulsion as sample preparation, Microchem. J., 2010, vol. 96, no. 1, pp. 180–185. https://doi.org/10.1016/j.microc.2010.03.005

    Article  CAS  Google Scholar 

  25. Amais, R.S., Garcia, E.E., Monteiro, M.R., and Nóbrega, J.A., Determination of Ca, Mg, and Zn in biodiesel microemulsions by FAAS using discrete nebulization, Fuel, 2012, vol. 93, pp. 167–171. https://doi.org/10.1016/j.fuel.2011.10.042

    Article  CAS  Google Scholar 

  26. De Jesus, A., Zmozinski, A.V., Barbara, J.A., Vale, M.G.R., and Silva, M.M., Determination of calcium and magnesium in biodiesel by flame atomic absorption spectrometry using microemulsions as sample preparation, Energy Fuels, 2010, vol. 24, no. 3, pp. 2109–2112. https://doi.org/10.1021/ef9014235

    Article  CAS  Google Scholar 

  27. Soares, S., Fernandes, G.M., Moraes, L.M.B., Batista, A.D., and Rocha, F.R.P., Single-phase determination of calcium and magnesium in biodiesel using smartphone-based digital images, Fuel, 2022, vol. 307, article no. 121837. https://doi.org/10.1016/j.fuel.2021.121837

    Article  CAS  Google Scholar 

  28. De Magalhães, M.R.L., Barros, A.I., de Oliveira, A.P., dos Santos da Silva, A., and Villa, R.D., Dissolution in ethanol as a sample preparation procedure for determination of metals in biodiesel by FAAS, Curr. Anal. Chem., 2014, vol. 10, no. 1, p. 166–171. https://benthamscience.com/article/56955. Cited February 05, 2023.

  29. Edlund, M., Visser, H., and Heitland, P., Analysis of biodiesel by argon-oxygen mixed-gas inductively coupled plasma optical emission spectrometry, J. Anal. At. Spectrom., 2002, vol. 17, no. 3, pp. 232–235. https://doi.org/10.1039/b111476j

    Article  CAS  Google Scholar 

  30. Shishov, A.Y., Nikolaeva, L.S., Moskvin, L.N., and Bulatov, A.V., Fully automated spectrophotometric procedure for simultaneous determination of calcium and magnesium in biodiesel, Talanta, 2015, vol. 135, pp. 133–137. https://doi.org/10.1016/j.talanta.2014.12.014

    Article  CAS  PubMed  Google Scholar 

  31. Fortunato, F.M., Bechlin, M.A., Neto, J.A.G., Donati, G.L., and Jones, B.T., Internal standard addition calibration: Determination of calcium and magnesium by atomic absorption spectrometry, Microchem. J., 2015, vol. 122, pp. 63–69. https://doi.org/10.1016/j.microc.2015.04.009

    Article  CAS  Google Scholar 

  32. Shishov, A., Zabrodin, A., Moskvin, L., Andruch, V., and Bulatov, A., Interfacial reaction using particle-immobilized reagents in a fluidized reactor. Determination of glycerol in biodiesel, Anal. Chim. Acta, 2016, vol. 914, p. 75–80. https://doi.org/10.1016/j.aca.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  33. Shishov, A., Penkova, A., Zabrodin, A., Nikolaev, K., Dmitrenko, M., Ermakov, S., and Bulatov, A., Vapor permeation-stepwise injection simultaneous determination of methanol and ethanol in biodiesel with voltammetric detection, Talanta, 2016, vol. 148, pp. 666–672. https://doi.org/10.1016/j.talanta.2015.05.041

    Article  CAS  PubMed  Google Scholar 

  34. Vakh, C.S., Bulatov, A.V., Shishov, A.Y., Zabrodin, A.V., and Moskvin, L.N., Determination of silicon, phosphorus, iron and aluminum in biodiesel by multicommutated stepwise injection analysis with classical least squares method, Fuel, 2014, vol. 135, pp. 198–204. https://doi.org/10.1016/j.fuel.2014.06.059

    Article  CAS  Google Scholar 

  35. Samarov, A.A., Smirnov, M.A., Sokolova, M.P., and Toikka, A.M., Liquid-liquid equilibrium data for the system n-octane + toluene + DES at 293.15 and 313.15 K and atmospheric pressure, Theor. Found. Chem. Eng. 2018, vol. 52, no.2, pp. 258–263. https://doi.org/10.1134/S0040579518020148

    Article  CAS  Google Scholar 

  36. Samarov, A.A., Shishaeva, L.M., and Toikka, A.M., Phase equilibria and extraction properties of deep eutectic solvents in alcohol–ester systems, Theor. Found. Chem. Eng., 2020, vol. 54, no. 4, pp. 551–559. https://doi.org/10.1134/S0040579520040259

    Article  CAS  Google Scholar 

  37. Samarov, A.A., Toikka, M.A., and Toikka, A.M., Phase equilibria in alcohol–ester systems with deep eutectic solvents based on choline chloride at 293.15 and 313.15 K, Theor. Found. Chem. Eng., 2021, vol. 55, no. 2, pp. 290–300. https://doi.org/10.1134/S004057952102010X

    Article  CAS  Google Scholar 

  38. Zinov’eva, I.V., Fedorov, A.Ya., Milevskii, N.A., Zakhodyaeva, Yu.A., and Voshkin, A.A., A deep eutectic solvent based on choline chloride and sulfosalicylic acid: Properties and applications, Theor. Found. Chem. Eng., 2021, vol. 55, no. 3, pp. 371–379. https://doi.org/10.1134/S0040579521030246

    Article  Google Scholar 

  39. Zinov’eva, I.V., Fedorov, A.Ya., Milevskii, N.A., Zakhodyaeva, Yu.A., and Voshkin, A.A., Dissolution of metal oxides in a choline chloride–sulphosalicylic acid deep eutectic solvent, Theor. Found. Chem. Eng., 2021, vol. 55, no. 4, pp. 663–670. https://doi.org/10.1134/S0040579521040370

    Article  Google Scholar 

  40. Milevsky, N.A., Zinovieva, I.V., Zakhodyaeva, Yu.A., and Voshkin, A.A., Extractive separation of Co/Ni pair with the deep eutectic solvent Aliquat 336/thymol, Theor. Found. Chem. Eng., 2022, vol. 56, no. 1, pp. 45–52. https://doi.org/10.1134/s0040579522010080

    Article  CAS  Google Scholar 

  41. Shishov, A., Savinov, S., Volodina, N., Gurev, I., and Bulatov, A., Deep eutectic solvent-based extraction of metals from oil samples for elemental analysis by ICP-OES. Microchem. J., 2022, vol. 179, article no. 107456. https://doi.org/10.1016/j.microc.2022.107456

    Article  CAS  Google Scholar 

  42. Vilková, M., Płotka-Wasylka, J., and Andruch, V., The role of water in deep eutectic solvent–base extraction, J. Mol. Liq., 2020, vol. 304, article no. 112747. https://doi.org/10.1016/j.molliq.2020.112747

    Article  CAS  Google Scholar 

  43. Chromá, R., Vilková, M., Shepa, I., Makoś-Chełstowska, P., and Andruch, V., Investigation of tetrabutylammonium bromide–glycerol-based deep eutectic solvents and their mixtures with water by spectroscopic techniques, J. Mol. Liq., 2021, vol. 330, article no. 115617. https://doi.org/10.1016/j.molliq.2021.115617

    Article  CAS  Google Scholar 

  44. Makoś-Chełstowska, R., Chromá, R., and Andruch, V., Closer look into the structures of tetrabutylammonium bromide–glycerol-based deep eutectic solvents and their mixtures with water, J. Mol. Liq., 2021, vol. 338, article no. 116676. https://doi.org/10.1016/j.molliq.2021.116676

    Article  CAS  Google Scholar 

Download references

Funding

The research was carried out with the financial support of the grant of the President of Russia (project no. MK-806.2022.1.3). Scientific research was partially performed at the Chemical Analysis and Materials Research Centre of Saint Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Shishov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishov, A.Y., Markova, U.O., Nizov, E.R. et al. Ultrasound Assistant Deep-Eutectic-Solvent-Based Liquid–Liquid Microextraction for the Determination of Transesterification Catalyst in Biodiesel Samples. Theor Found Chem Eng 57, 104–111 (2023). https://doi.org/10.1134/S004057952301013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057952301013X

Keywords:

Navigation