Skip to main content
Log in

Theoretical Substantiation of the Mechanism of Ultrasonic Dehydration of Materials Without a Phase Transition of Liquid Into Vapor

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The article theoretically substantiates the ability of ultrasonic vibrations to dehydrate capillary-porous materials due to the dispersion of moisture from the capillaries and pores of the material under the action of shock waves formed by cavitation bubbles. A phenomenological model is presented based on the analysis of the slow growth of a distorted cylindrical cavitation bubble, taking into account the influence of the cylindrical capillary walls limiting its oscillations. The optimal range (150–170 dB) of ultrasonic pressure levels is revealed, at which the mechanism of cavitation moisture dispersion is realized. It is established that the optimal conditions for the action of ultrasonic vibrations on a dried material are realized when the dimensions or thicknesses of the layer of the dried material correspond to the length of ultrasonic vibrations in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Tsai, S.C., Song, Y.L., Tsai, C.S., Yang, C.C., Chiu, W.Y., and Lin, H.M., Ultrasonic spray pyrolysis for nanoparticles synthesis, J. Mater. Sci., 2004, vol. 39, pp. 3647–3657. https://doi.org/10.1023/B:JMSC.0000030718.76690.11

    Article  CAS  Google Scholar 

  2. Boucher R.M.G., Drying by airborne ultrasonics, Ultrason. News, 1959, vol. 3, no. 2, pp. 8–9.

    Google Scholar 

  3. Legay, M., Gondrexon, N., Person, S.L., Boldo, P., and Bontemps, A., Enhancement of heat transfer by ultrasound: review and recent advances, Int. J. Chem. Eng., vol. 2011, paper no. ID 670108.https://doi.org/10.1155/2011/670108

  4. Musielak, G., Mierzwa, D., and Kroehnke, J., Food drying enhancement by ultrasound—a review, Trends Food Sci. Technol., 2016, vol.56, pp. 126–141. https://doi.org/10.1016/j.tifs.2016.08.003

    Article  CAS  Google Scholar 

  5. Cárcel, J.A., Garcia-Pérez, J.V., Riera, E., Rosselló, C., and Mulet, A., Ultrasonically assisted drying, in Ultrasound in Food Processing: Recent Advances, Villamiel, M., Montilla, A., García-Pérez, J.V., Cárcel, J.A., and Benedito, J., Eds., Chichester, UK: Wiley, 2017, ch. 14, pp. 371–391. https://doi.org/10.1002/9781118964156.ch14

  6. Rodríguez, Ó., Eim, V., Rosselló, C., Femenia, A., Cárcel, J.A., and Simal, S., Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality, J. Sci. Food Agric., 2018, vol. 98, no. 5, pp. 1660–1673. https://doi.org/10.1002/jsfa.8673

    Article  CAS  PubMed  Google Scholar 

  7. Onwude, D.I., Hashim, N., Janius, R., Abdan, K., Chen, G., and Oladejo, A.O., Non-thermal hybrid drying of fruits and vegetables: a review of current technologies, Innovative Food Sci. Emerging Technol., 2017, vol. 43, pp. 223–238. https://doi.org/10.1016/j.ifset.2017.08.010

    Article  CAS  Google Scholar 

  8. Başlar, M., Toker, Ö.S., Karasu, S., Tekin, Z.H., and Biranger Yildirim, H., Ultrasonic application for food dehydration, in Handb. Ultrason. Sonochem., Singapour: Springer, 2016, pp. 1247–1270. https://doi.org/10.1007/978-981-287-278-4_64

  9. Szadzińska, J., Mierzwa, D., Pawłowski, A., Musielak, G., Pashminehazar, R., and Kharaghani, A., Ultrasound- and microwave-assisted intermittent drying of red beetroot, Drying Techn., 2020, vol. 38, no. 1–2, pp. 93–107. https://doi.org/10.1080/07373937.2019.1624565

  10. Beck, S.M., Sabarez, H., Gaukel, V., and Knoerzer, K., Enhancement of convective drying by application of airborne ultrasound—a response surface approach, Ultrason. Sonochem., 2014, vol. 21, no. 6, pp. 2144–2150. https://doi.org/10.1016/j.ultsonch.2014.02.013

    Article  CAS  PubMed  Google Scholar 

  11. Nikolyuk O.I., Influence of ultrasonic drying method on the quality of pasta with liver, Proc. Voronezh State Univ. Eng. Technol., 2016, no. 3, pp. 189–194. https://doi.org/10.20914/2310-1202-2016-3-189-194

  12. Bhangu, S.K. and Ashokkumar, M., Theory of sonochemistry, Top. Curr. Chem., 2016, vol. 374, article no. 56. https://doi.org/10.1007/s41061-016-0054-y

    Article  CAS  Google Scholar 

  13. Khmelev, V.N., Shalunov, A.V., Khmelev, S.S., and Tsyganok S.N., Ul’trazvuk. Apparaty i tekhnologii: monografiya (Ultrasound. Units of Equipment and Technologies: Monography), Biisk: Altai. Gos. Tekh. Univ., 2015.

  14. Rozenberg, L.D., Moshchnye ul’trazvukovye polya (Powerful Ultrasound Fields), vol. 2 of Fizika i tekhnika moshchnogo ul’trazvuka (Physics and Technique of Powerful Ultrasound), Rozenber, L.D., Ed., Moscow: Nauka, 1968.

  15. Margulis, M.A., Sonochemistry and Cavitation, London: Gordon & Breach, 1995.

    Google Scholar 

  16. Krasil’nikov, V.A. and Krylov, V.V., Vvedenie v fizicheskuyu akustiku (Introduction to Physical Acoustics), Moscow: Nauka, 1984.

  17. Golykh, R.N., Enhancement of efficiency of the ultrasonic vibrations action on the processes in systems with liquid phase, Doctoral (Tech.) Dissertation, Biisk: Altai. Gos. Tekh. Univ., 2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Khmelev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khmelev, V.N., Shalunov, A.V., Golyx, R.N. et al. Theoretical Substantiation of the Mechanism of Ultrasonic Dehydration of Materials Without a Phase Transition of Liquid Into Vapor. Theor Found Chem Eng 57, 56–66 (2023). https://doi.org/10.1134/S0040579523010062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523010062

Navigation