Skip to main content
Log in

Universality of Supercritical Carbon Dioxide in the Process of Tertiary Oil Production

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The results of comparative analysis for the key factors of the mechanism of oil-recovery enhancement with the use of gases in a supercritical fluid state as applied to carbon dioxide and propane (propane/butane mixtures) are presented. The above-mentioned factors as a subject of consideration incorporate the dissolving ability of compressed gases with respect to oil and its components, the phase behavior of binary systems containing the mentioned displacing agents and oil hydrocarbons, the critical parameters for the binary systems of fluid-phase behavior types I–II, the compressibility of carbon dioxide and propane under oil-displacement process conditions in tertiary oil production, the viscosity of the media participating in the discussed process and, finally, the swelling of oil as a result of its saturation with a gas. The results of experimental implementation under supercritical fluid conditions are given for an extraction oil-recovery process with carbon dioxide as an extragent in one case and propane in the other case. It is established that propane and propane/butane mixtures are three or more times superior to CO2 in dissolving ability with respect to oil components under displacement-process conditions; that they more often form systems of fluid-phase behavior types I–II with the oil components, which is preferable for the process of its recovery; that the compressor power spent on the compression of carbon dioxide and methane is threefold or more higher than for propane; and, finally, that propane has a much lower viscosity under oil-displacement conditions. In sum, propane and propane/butane mixtures are preferable for use in the oil-displacement process within the framework of tertiary oil production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Zheltov, Yu.P., Razrabotka neftyanykh mestorozhdenii. Uchebnik dlya vuzov (Development of Oil Fields. Textbook), Moscow: Nedra, 1998.

  2. Gimatudinov, Sh.K. and Shirkovskii, A.I., Fizika neftyanogo i gazovogo plasta (Physics of Oil and Gas Pools), Moscow: Al’ans, 2005.

  3. Grushevenko, E., Perspektivy razvitiya tretichnykh MUN v mire i v Rossii (Perspectives of the Tertiary Enhanced Oil Recovery Method Development in the World and Russia), Moscow: Tsentr. Energ. Mosk. Shkoly Upr. Skolkovo, 2021.

  4. Balint, V., Ban, A., Doleshal, Sh., Zabrodin, P.I., and Terek, Ya., Primenenie uglekislogo gaza v dobyche nefti (Application of Carbon Dioxide Gas in Oil Production), Moscow: Nedra, 1977.

  5. Zhuze, T.P., Rol’ szhatykh gazov kak rastvoritelei (Role of Pressurized Gases as Solvents), Moscow: Nedra, 1981.

  6. Orr Jr., F.M., Heller, J.P., and Taber, J.J., Carbon dioxide flooding for enhanced oil recovery: promise and problems, J. Am. Oil Chem. Soc., 1982, vol. 59, no. 10, pp. 810A–817A. https://doi.org/10.1007/BF02634446

    Article  CAS  Google Scholar 

  7. Surguchev, M.L., Vtorichnye i tretichnye metody uvelicheniya nefteotdachi plastov (Secondary and Tertiary Enhanced Oil Recovery Methods), Moscow: Nedra, 1985.

  8. Antoniadi, D.G., Uvelichenie nefteotdachi plastov gazovymi i parogazovymi metodami (Oil Recovery Enhancement by Gas and Combined-Cycle Methods), Krasnodar: Sovetskaya Kuban’, 2000.

  9. Gumerov, F.M., Perspectives of carbon dioxide application for enhanced oil recovery in Vesti gasovoi nauki (News in Gas Science), Grigor’ev, B.A., Ed., 2011, no. 2, pp. 93–98.

  10. Gumerov, F.M., Sverkhkriticheskie flyuidnye tekhnologii: ekonomicheskaya tselesoobraznost (Supercritical Fluid Technologies: Economical Expediency), Kazan: AN RT, 2019.

  11. Behar, E. and Mikitenko, P., Application des fluids supercritiques a la production d′hydrocarbures. Exploitation des gisements par recuperation assistee et applications diverses: petrole, sables, schistes, charbons, Rev. Inst. Fr. Pet., 1985, no. 1, pp. 33–49.

  12. Kay, W.B., Vapor–liquid equilibrium relations of binary systems. The propane–n-alkane systems. n-Butane and n-pentane, J. Chem. Eng. Data, 1970, vol. 15, pp. 46–52. https://doi.org/10.1021/je60044a026

    Article  CAS  Google Scholar 

  13. Beránek, P. and Wichterle, I., Vapour-liquid equilibria in the propane–n-butane system at high pressures, Fluid Phase Equilib., 1981, vol. 6, no. 3–4, pp. 279–282. https://doi.org/10.1016/0378-3812(81)85010-8

  14. Reamer, H.H. and Sage, B.H., Phase equilibria in hydrocarbon systems. Volumetric and phase behavior of the propane–n-decane systems, J. Chem. Eng. Data, 1966, vol. 11, no. 1, pp. 17–24. https://doi.org/10.1021/je60028a004

    Article  CAS  Google Scholar 

  15. Gumerov, F.M., Khairutdinov, V.F., and Zaripov, Z.I., An additional condition of efficiency of the supercritical fluid extraction process, Theor. Found. Chem. Eng., 2021, vol. 55, no. 3, pp. 348–358. https://doi.org/10.1134/S0040579521030076

    Article  CAS  Google Scholar 

  16. Khairutdinov, V.F., Gumerov, F.M., Khabriev, I.Sh., Gabitov, R.F., Farakhov, M.I., Gabitov, F.R., and Zaripov, Z.I., Utilization of Wood Railway Sleepers Using a Supercritical Fluid Extraction Process, Ekol. Prom-st. Ross., 2020, vol. 24, no. 9, pp. 4–10. https://doi.org/10.18412/1816-0395-2020-9-4-10

    Article  Google Scholar 

  17. Men’shutina, N.V., Aerogels—Light, Magical, New, Khim. Zh., 2019, no. 9, pp. 34–39. https://tcj.ru/tcj_2019_09-aerogeli/. Cited January 20, 2023.

  18. Cohen, A.L., Critical point drying, in Principles and Techniques of Scanning Electron Microscopy. Biological Applications, Hayat, M.A., Ed., New York: Van Nostrand/Reinhold, 1974, vol. 1, pp. 44–112.

    Google Scholar 

  19. Gumerov, F.M., Khairutdinov, V.F., Akhmetzyanov, T.R., Gabitov F.R., Zaripov Z.I., Farakhov, M.I., and Mukhutdinov A.V., Supercritical fluid propane–butane extraction treatment of oil sludge, Russ. J. Phys. Chem. B, 2017, vol. 11, pp. 1103–1108. https://doi.org/10.1134/S1990793117070090

    Article  CAS  Google Scholar 

  20. Gumerov, F.M., Farakhov, M.I., Khayrutdinov, V.F., Gabitov, R.F., Zaripov, Z.I., Khabriyev, I.Sh., and Akhmetzyanov, T.R., Improvement of functionality of carbonate macadam via supercritical fluid impregnation with bituminous compounds, Russ. J. Phys. Chem. B, 2016, vol. 10, no. 7, pp. 1053–1061. https://doi.org/10.1134/S1990793116070095

    Article  CAS  Google Scholar 

  21. Khairutdinov, V.F., Akhmetzyanov, T.R., Gumerov, F.M., Khabriev, I.Sh., and Farakhov, M.I., Supercritical fluid propane–butane extraction treatment of oil-bearing sands, Theor. Found. Chem. Eng. 2017, vol. 51, no. 3, pp. 299–306. https://doi.org/10.1134/S0040579517030083

    Article  CAS  Google Scholar 

  22. Dickinson, N.L. and Meyers, J.L., Solexol fractionation of menhaden oil, J. Am. Oil Chem. Soc., 1952, vol. 29, no. 6, pp. 235–239. https://doi.org/10.1007/BF02645653

    Article  CAS  Google Scholar 

  23. Coenen, H. and Kriegel, E., Anwendungen der extraktion mit überkritischen gasen in der nahrungsmittel-industrie, Chem. Ing. Tech., 1983, vol. 55, no. 11, pp. 890–891. https://doi.org/10.1002/cite.330551121

    Article  CAS  Google Scholar 

  24. Petermann, M., Kareth, S., Weidner, E., and Hammer, E., Used oil recycling by using supercritical propane, Proc. 6 th Intern. Symp. Supercritical Fluids, Versailes, 2003, paper no. PE8.

  25. Van Konynenburg, P.H. and Scott, R.L., Critical lines and phase equilibria in binary van der Waals mixtures, Philos. Trans. R. Soc., A, 1980, vol. 298, no. 1442, pp. 495–540. https://doi.org/10.1098/rsta.1980.0266

  26. Williams, D.F., Extraction with supercritical gases, J. Chem. Eng. Sci., 1981, vol. 36, no. 11, pp. 1769–1788. https://doi.org/10.1016/0009-2509(81)80125-X

    Article  CAS  Google Scholar 

  27. Schwartz, C.E., The phase equilibrium of alkanes and supercritical fluids, Master (Chem. Eng.) Thesis, Stellenbosch: Univ. Stellenbosch, 2001.

  28. Dorn, R. and Brunner, G., High-pressure fluid-phase equilibria: experimental methods and systems investigated (1988–1993), Fluid Phase Equilib., 1995, vol.106, no. 1–2, pp. 213–282. https://doi.org/10.1016/0378-3812(95)02703-H

  29. Gupta, R.B. and Shim, J.-J., Solubility in Supercritical Carbon Dioxide, Boca Raton: CRC Press, 2007. https://doi.org/10.1201/9781420005998

  30. Khairutdinov, V.F., Gumerov, F.M., Zaripov, Z.I., Khabriev, I.Sh., Yarullin, L.Yu., and Abdulagatov, I.M., Solubility of naphtaline in supercritical binary solvent propane + n-butane mixture, J. Supercrit. Fluids, 2020, vol. 156, paper no. 104628. https://doi.org/10.1016/j.supflu.2019.104628

  31. Garcia-González, J., Molina, M.J., Rodriguez, F., and Mirada, F., Solubilities of phenol and pyrocatechol in supercritical carbon dioxide, J. Chem. Eng. Data, 2001, vol. 46, no. 4, pp. 918–921. https://doi.org/10.1021/je0003795

    Article  CAS  Google Scholar 

  32. Khazipov, M.R., Thermodynamic characteristics of the process of supercritical fluid regeneration of ion-exchange and nickel–molybdenum catalysts, Extended Abstract of Cand. Sci. (Techn.) Dissertation, Kazan: KGEU, 2019.

  33. Žilnik, L.F., Grilc, M., Levec, J., Peper, S., and Dohrn, R., Phase-equilibrium measurements with a novel multi-purpose high-pressure view cell: CO2 + n-decane and CO2 + toluene, Fluid Phase Equilib., 2016 vol. 419, pp. 31–38. https://doi.org/10.1016/j.fluid.2016.03.010

    Article  CAS  Google Scholar 

  34. King, M.B., Kassim, K., Bott, T.R., Sheldon, J.R., and Mahmud, R.S., Prediction of mutual solubilities of heavy components with supercritical and slightly subcritical solvents: the role of equations of state and some applications of a simple expanded lattice model at subcritical temperatures, Ber. Bunsenges. Phys. Chem., 1984, vol. 88, p. 812–820. https://doi.org/10.1002/bbpc.19840880909

    Article  CAS  Google Scholar 

  35. Khairutdinov, V.F., Gumerov, F.M., Khabriev, I.Sh., Farakhov, M.I., Salikhov, I.Z., Polishuk, I., and Abdulagatov, I.M., Measurements and modeling of the VLE properties of n-hexadecane in supercritical binary propane + n-butane solvent, Fluid Phase Equilib., 2020, vol. 510, no. 112502. https://doi.org/10.1016/j.fluid.2020.112502

  36. Abdulagatov, A.I., Stepanov, G.V., and Abdulagatov, I.M., The critical properties of binary mixtures containing carbon dioxide: experimental data, High Temp., 2007, vol. 45, no. 1, pp. 85–126. https://doi.org/10.1134/S0018151X07010117

    Article  CAS  Google Scholar 

  37. Alekseev, G.N., Obshchaya teplotekhnika (General Heat Technology), Moscow: Vysshaya shkola, 1980.

  38. Vargaftik, N.B., Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (Handbook on Thermophysical Properties of Gases and Liquids), Moscow: Nauka, 1972.

  39. Khapov, D.A., Popova, R.A., and Moskalev, I.N., The compressibility factor of hydrocarbonic gases at low and moderate pressures, Privolzh. Nauchn. Vestn., 2013, no. 12/2, pp. 75–79.

  40. Nourozieh, H., Kariznovi, M., and Abedi, J., Density and viscosity of Athabasca bitumen samples at temperatures up to 200°C and pressures up to 10 MPa, SPE Reservoir Eval. Eng., 2015, vol. 18, no. 3, pp. 375–386. https://doi.org/10.2118/176026-PA

    Article  CAS  Google Scholar 

  41. Nourozieh, H., Kariznovi, M., and Abedi, J., Solubility of n-butane in Athabasca bitumen and saturated densities and viscosities at temperatures up to 200°C, SPE J., 2016, vol. 22, no. 1, pp. 94–102. https://doi.org/10.2118/180927-PA

    Article  Google Scholar 

  42. Li, H. and Yang, D., Phase behaviour of C3H8/n-C4H10/heavy-oil systems at high pressures and elevated temperatures, J. Can. Pet. Technol., 2013, vol. 52, no. 1, pp. 30–40. https://doi.org/10.2118/157744-PA

    Article  Google Scholar 

  43. Yang, P., Li, H., and Yang, D., Determination of saturation pressures and swelling factors of solvent(s)—heavy oil systems under reservoir conditions, Ind. Eng. Chem. Res., 2014, vol. 53, pp. 1965–1972. https://doi.org/10.1021/ie403477u

    Article  CAS  Google Scholar 

  44. Cao, M. and Gu, Y., Temperature effects on the phase behaviour, mutual interactions and oil recovery of a light crude oil–CO2 system, Fluid Phase Equilib., 2013, vol. 356, pp. 78–89. https://doi.org/10.1016/j.fluid.2013.07.006

    Article  CAS  Google Scholar 

  45. Gumerov, F.M., Zaripov, Z.I., and Khairutdinov, V.F., Physicochemical nature of working medium used in a supercritical fluidic state for recovery of tertiary oil, Materialy Mezhdunar. Nauchno-prakt. Sem. “Eksperimental’nye metody issledovaniya plastovykh sistem: problemy i resheniya” (Proc. Int. Sci.-Pract. Sem. “Experimental methods of studies on reservoir systems: problems and solutions” MERSS-2021), Moscow, 2021, p. 9.

  46. Gumerov, F.M., Khayrutdinov, V.F., and Zaripov, Z.I., Physical-chemical nature of working medium applied in supercritical fluidal state for displacement of tertiary oil, Vesti Gazov. Nauki, 2021, vol. 4(49), pp. 41–47.

    Google Scholar 

  47. Grigoriev, B.A., Gerasimov, A.A., Alexandrov, I.S., and Nemzer, B.V., Thermophysical Properties of Individual Hydrocarbons of Petroleum and Natural Gases Properties, Methods, and Low–Carbon Technologies, Cambridge, MA: GPP/Elsevier, 2022.

    Google Scholar 

  48. Mardamshin, R.R., Sten’kin, A.V., Kalinin, S.A., Morozyuk, O.A., Kalinin, S.A., Skvortsov, A.S., Usachev, G.A., and Mett, D.A., Laboratory investigations of using high CO2 associated petroleum gas for injection at the Tolum field, Nedropol’zovanie, 2021, vol. 21, no. 4, pp. 163–170. https://doi.org/10.15593/2712-8008/2021.4.3

    Article  CAS  Google Scholar 

  49. Bichurin, A.A., Utilization of oil–associated gas by injection of water–gas mixture in a reservoir, Inzh. Prakt. 2015, no. 6–7, paper no. 972.

Download references

ACKNOWLEDGMENTS

This study was performed on the equipment of the Shared Facilities Center “Nanomaterials and Nanotechnologies” of the Kazan National Research Technological University.

Funding

This study was financially supported by the Russian Scientific Foundation (project no. 22-19-00117) and the project of the Ministry of Science and Higher Education of the Russian Federation (grant no. 075-15-2021-699).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Gumerov.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gumerov, F.M., Zaripov, Z.I., Khairutdinov, V.F. et al. Universality of Supercritical Carbon Dioxide in the Process of Tertiary Oil Production. Theor Found Chem Eng 57, 45–55 (2023). https://doi.org/10.1134/S0040579523010050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523010050

Keywords:

Navigation