Skip to main content
Log in

Suspending Conditions for a Smooth-Wall Mixer

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Based on the known assumption about the predominant effect of dynamic velocity on the detachment of solid-phase particles from a bottom, the suspending condition for a smooth-wall mixer is proposed. The importance of experimental dynamic-velocity measurements for a certain industrial suspension is emphasized. It is shown that the intensive tangential flow of a mixed suspension should be taken into account when calculating the dynamic velocity. The equation for calculating the minimum stirrer rotation speed to exclude the formation of a sediment on the bottom of a mixer is proposed. The equation is experimentally verified for mixers of laboratory and industrial scales in the mixing of L : S systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Kraume, M., Die entwicklung der ruhrtechnik von einer empirischen kunst zur wissenschaft, Chem. Ing. Techn., 2014, vol. 86, no. 12, p. 2051–2062. https://doi.org/10.1002/cite.201400124

    Article  CAS  Google Scholar 

  2. Nienow, A.W., Stirring and stirred-tank reactors, Chem. Ing. Techn., 2014, vol. 86, no. 12, p. 2063–2074. https://doi.org/10.1002/cite.201400087

    Article  CAS  Google Scholar 

  3. Atiemo-Obeng, V.A., Penney, V.R, and Armenante, P., Solid-liquid mixing, in Handbook of Industrial Mixing: Science and Practice, Paul, E.L., Atiemo-Obeng, V.A. and Kresta, S.M., Eds., Hoboken, NJ: Wiley, 2004, ch. 10, pp. 543–584.

    Google Scholar 

  4. Brown, D.A.R., Etchells III, A.W., Grenville, R.K., Myers, K.J., Ozcan-Taskin, G.N., Atiemo-Obeng, V.A., Armenante, P.H., and Penney, W.R., Solid–liquid mixing, in Advances in Industrial Mixing: A Companion to the Handbook of Industrial Mixing, Kresta, S.M., Etchells III, A.W., Dickey, D.S., and Atiemo-Obeng, V.A., Eds., Hoboken, NJ: Wiley, 2016, ch. 10, pp. 357–450.

    Google Scholar 

  5. Mischen und Rühren: Grundlagen und moderne Verfahren, Kraume, M., Ed., Weinheim: Willey, VCH, 2003. https://doi.org/10.1002/3527603360

  6. Beck, H. and Himmelsbach, W., Handbuch der rührtechnik: grundlagen, auswahlkriterien, anwendung, Schopfheim: Ekato, 1990.

  7. Braginskii, L.N., Begachev, V.I., and Barabash, V.M., Peremeshivanie v zhidkikh sredakh. Fizicheskie osnovy i inzhenernye metody rascheta (Mixing in Liquid Media. Physical Basis and Engineering Methods of Calculation), Leningrad: Khimiya, 1984.

  8. Strek, F., Michani a michaci zarizeni, Praha: SNTL, 1977.

    Google Scholar 

  9. Mishra, P. and Ein-Mozaffari, F., Critical review of different aspects of liquid-solid mixing operations, Rev. Chem. Eng.,2020, vol. 36, no. 5, pp. 555–492. https://doi.org/10.1515/revce-2018-0017

    Article  Google Scholar 

  10. Cudak, M., Domanski, M., Szoplik, J., and Karcz, J., An effect of the impeller eccentricity on the process characteristics in an agitated vessel—experimental and numerical modeling, Theor. Found. Chem. Eng., 2016, vol. 50, no. 6, 922–931. https://doi.org/10.1134/S0040579516060038

    Article  CAS  Google Scholar 

  11. Delaplace, G., Bouvier, L., Moreau, A., and Andre, Ch., An arrangement of ideal reactors as a way to model homogenizing processes with a planetary mixer, AIChE J., 2011, vol. 57, no. 7, pp. 1678–1683. https://doi.org/10.1002/aic.12384

    Article  CAS  Google Scholar 

  12. Domanskii, I.V., Mil’chenko, A.I., and Vorob’ev-Desyatovskii, N.V., Large size agitators witch precession impeller for ore slurries—study, design, tests, Chem. Eng. Sci., 2011, vol. 66, pp. 2277–2284. https://doi.org/10.1016/j.ces.2011.01.035

    Article  CAS  Google Scholar 

  13. Mil'chenko, A.I., Domanskii, I.V., Vorob’ev-Desyatovskii, N.V., and Kubyshkin, S.A., Design of precession impellers for ore pulp agitation in large-volume agitators, Proc. 15th Eur. Conf. Mixing, St. Petersburg, 2015, p. 234.

  14. Domanskii, I.V., Mil’chenko, A.I., Sargaeva, Y.V., Kubyshkin, S.A., and Vorob’ev-Desyatovskii, N.V., Experience in the design and reliable operation of ore–pulp precessional mixers for large-volume process tanks, Theor. Found. Chem. Eng, 2017, vol. 51, no. 6, pp. 1030–1042. https://doi.org/10.1134/S0040579517060021

    Article  CAS  Google Scholar 

  15. Nienow, A.W. and Bujalski, W., The versatility of up-pumping hydrofoil agitators, Chem. Eng. Res. Des., 2004, vol. 82, no. 9, p. 1073–1081. https://doi.org/10.1205/cerd.82.9.1073.44150

    Article  CAS  Google Scholar 

  16. Vol’dman, G.M. and Zelikman, A.N., Teoriya gidrometallurgicheskikh protsessov (Theory of Hydrometallurgical Processes), Moscow: Intermet Inzhiniring, 2003.

  17. Latva-Kokko, M., Hirsi, T., Ritasalo, T., and Tiihonen, J., Improving the process performance of gold cyanide leaching reactors, Proc. World Gold Conf., Johannesburg, 2015, pp. 1–11.

  18. Zwietering, Th.N., Suspension of solid particles in liquid by agitators, Chem. Eng. Sci., 1958, vol. 8, pp. 244–253.

    Article  CAS  Google Scholar 

  19. Oldsue, J.Y., Fluid Mixing Technology, New York: McGraw-Hill, 1983.

    Google Scholar 

  20. Tamburini, A., Cipollina, A., Micale, G., Scargiali, F., and Brucato, A., Particle suspension in vortexing unbaffled stirred tanks, Ind. Eng. Chem. Res., 2016, vol. 55, pp. 7535–7547. https://doi.org/10.1021/acs.iecr.6b00824

    Article  CAS  Google Scholar 

  21. Cleaver, J.W. and Yates, B., Mechanism of detachment of colloidal particles from a flat substrate in a turbulent flow, J. Colloid Interface Sci., 1973, vol. 44, no. 3, pp. 464–474. https://doi.org/10.1016/0021-9797(73)90323-8

    Article  CAS  Google Scholar 

  22. Boothroyd, R.G., Flowing Gas-Solids Suspensions, London: Chapman and Hall, 1971.

    Google Scholar 

  23. Saffman, P.G., The lift on a small sphere in a slow shear flow, J. Fluid. Mech., 1965, vol. 22, no. 2, pp. 385–400. https://doi.org/10.1017/S0022112065000824

    Article  Google Scholar 

  24. Barabash, V.M., Braginskii, L.N., and Kozlova, E.G., Application of apparatus with agitating devices for mixing of high-concentrated suspensions, Teor. Osn. Khim. Tekhnol., 1990, vol. 24, no. 1, pp. 63–68.

    CAS  Google Scholar 

  25. Barabash, V.M. and Zelenskii, V.E., Agitation of suspensions, Theor. Found. Chem. Eng., 1997, vol. 31, no. 5, pp. 419–424.

    CAS  Google Scholar 

  26. RD (Guiding Normative Document) 26-01-90-85: Mechanical Agitating Devices. Calculation Method, 1986.

  27. Baldi, G., Conti, R., and Alaria, E., Complete suspension of particles in mechanically agitated vessels, Chem. Eng. Sci., 1978, vol. 33, pp. 21–25. https://doi.org/10.1016/0009-2509(78)85063-5

    Article  CAS  Google Scholar 

  28. Grenville, R.K., Mak, A.T.C., and Brown, D.A.R., Suspension of solid particles in vessels agitated by axial flow impellers, Chem. Eng. Res. Des., 2015, vol. 100, pp. 282–291.

    Article  CAS  Google Scholar 

  29. Kolmogorov, A.N., The local structure of turbulence in incompressible viscous fluid at very large Reynolds numbers, Dokl. Akad. Nauk SSSR, 1941, vol. 30, no. 4, p. 301–305.

    Google Scholar 

  30. Calabrese, R.V., Kresta, S.M., and Liu, M., Recognizing the 21 most influential contributions to mixing research, Chem. Eng. Prog., 2014, vol. 110, no. 1, p. 20–29. https://www.researchgate.net/publication/290807546_ Recognizing_the_21_Most_Influential_Contributions_to_Mixing_Research. Cited January 16, 2023.

  31. Domanskii, I.V. and Sokolov, V.N., Different cases generalization of convective heat exchange with the help of semiempirical theory of turbulent heat exchange, Teor. Osn. Khim. Tekhnol., 1968, vol. 2, no. 5, pp. 761–767.

    Google Scholar 

  32. Domanskii, I.V., Tishin, V.B., and Sokolov, V.N., Heat exchange during movement of gas–liquid mixtures in vertical tubes, Zh. Prikl. Khim., 1969, vol. 42, no. 4, pp. 851–856.

    CAS  Google Scholar 

  33. Wang, S., Suspension of High Concentration Slurry in Agitated Vessels, Master (Mech. Eng.) Thesis, Melbourne: RMIT University, 2010.

  34. GOST (State Standard) 28300-2010: Cardan Shafts of Traction Drive of Diesel Locomotives and Diesel trains. General Specifications, 2010.

  35. Getriebebau NORD: 2004/G1000-4/2004, Hamburg: Getriebebau NORD, 2004.

  36. Wu, J., Wang, S., Nguyen, B., Daniel, M., and Ola, E., Improved mixing in a magnetite iron ore tank via swirl flow: lab-scale and full-scale studies, Chem. Eng. Technol., 2016, vol. 39, no. 3, pp. 505–514. https://doi.org/10.1002/ceat.201500442

    Article  CAS  Google Scholar 

  37. Wu, J., Wang, S., Nguyen, B., Connor, T., Daniel, M., and Ola, E., Gain improved tank slurry agitation via swirl flow technology, Eng. Min. J., 2016, vol. 217, no. 4, pp. 78–80. https://doi.org/10.1002/ceat.201500442

    Article  CAS  Google Scholar 

  38. Assirelli, M., Bujalski, W., Eaglesham, A., and Nienow, A.W., Macro- and micromixing studies in an unbaffled vessel agitated by a Rushton turbine, Chem. Eng. Sci., 2008, vol. 63, pp. 35–46. https://doi.org/10.1016/j.ces.2007.07.074

    Article  CAS  Google Scholar 

  39. Yoshida, M., Shimada, N., Kanno, R., Matsuura, S., and Otake, Y., Liquid flow and mixing in bottom regions of baffled and unbaffled vessels agitated by turbine-type impeller, Intern. J. Chem. React. Eng., https://doi.org/10.1515/ijcre-2014-0086

  40. Lapteva, E.A. and Farakhov, T.M., Matematicheskie modeli i raschet teplomassoobmennykh kharakteristik apparatov (Mathematical Models and Calculation of the Apparatus Heat-Mass-Exchange Characteristics), Kazan: Otechestvo, 2013.

  41. Stoian, D., Enhancing energy efficiency and mass transfer in solid-liquid systems using mechanical mixing and cavitation, PhD Thesis, RMIT University, 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Domanskii.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domanskii, I.V., Mil’chenko, A.I., Sargaeva, Y.V. et al. Suspending Conditions for a Smooth-Wall Mixer. Theor Found Chem Eng 57, 154–164 (2023). https://doi.org/10.1134/S0040579523010037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523010037

Keywords:

Navigation