Skip to main content
Log in

State of the Art and Prospects for Studies of Structure Formation in Extraction Systems with Metal Compounds

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The state of the art of studies in the field of structure formation in extraction systems with metal compounds is considered. Structure formation occurs due to both the formation of coordination polymers and solid-phase particles composing precipitates and gels, which in turn may stabilize emulsions, and the association of amphiphilic molecules with the formation of micellae, microemulsions, and lyotropic liquid crystals. Some examples of structure formation near the interface between the aqueous and organic phases and in the volume of one of the liquid phases are described. Promising fields for using structure formation in extraction systems to develop new technologies and improve existing technologies, such as the processes of extraction with the use of reverse micelles or microemulsions, the leaching of metals with the use of extragent-containing microemulsions, the extraction of metals with the use of direct micelles, and the synthesis of nanoparticles in extraction systems, are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Sole, K.C., Solvent extraction in the hydrometallurgical processing and purification of metals, Solvent Extraction and Liquid Membranes: Fundamentals and Applications in New Materials, Aguilar, M. and Cortina, J.L, Eds., Boca Raton, Fla.: CRC, 2008, p. 141.

  2. Narbutt, J., Solvent extraction for nuclear power, Liquid-Phase Extraction, Handbooks in Separation Science, Poole, C.F, Ed., Amsterdam: Elsevier, 2020, p. 725.

  3. Ritcey, G.M., Crud in solvent extraction processing – A review of causes and treatment, Hydrometallurgy, 1980, vol. 5, nos. 2–3, p. 97.

    Article  CAS  Google Scholar 

  4. Zimmer, E. and Borchardt, J., Crud formation in the Purex and Thorex processes, Nucl. Technol., 1986, vol. 75, no. 3, p. 332.

    Article  CAS  Google Scholar 

  5. Sugai, H., Crud in solvent washing process for nuclear fuel reprocessing, J. Nucl. Sci. Technol., 1992, vol. 29, no. 5, p. 445.

    Article  CAS  Google Scholar 

  6. Sperline, R.P., Song, Y., Ma, E., and Freiser, H., Organic constituents of cruds in Cu solvent extraction circuits. I. Separation and identification of diluents-soluble compounds, Hydrometallurgy, 1998, vol. 50, no. 1, p. 1.

    Article  CAS  Google Scholar 

  7. Taghizadeh, M., Ghasemzadeh, R., Ghanadi Maragheh, M., and Ashrafizadeh, S.N., Crud formation in the solvent extraction system Zr(IV), HNO3–D2EHPA, Miner. Process. Extr. Metall. Rev., 2009, vol. 30, p. 260.

    Article  CAS  Google Scholar 

  8. Zagorodnyaya, A.N., Abisheva, Z.S., Sadykanova, S.E., et al., The characterisation and origins of interphase substances (cruds) in the rhenium solvent extraction circuit of a copper smelter, Hydrometallurgy, 2010, vol. 104, p. 308.

    Article  CAS  Google Scholar 

  9. Ning, P., Cao, H., Xiao, LinX., and Zhang, Y., The crud formation during the long-term operation of the V(V) and Cr(VI) extraction, Hydrometallurgy, 2013, vol. 137, p. 133.

    Article  CAS  Google Scholar 

  10. Matyushina, V.A., Kolmachikhina, O.B., and Vakula, K.A., Centrifugation of interphase suspension with the use of surfactants, Solid State Phenom., 2020, vol. 299, p. 1075.

    Article  Google Scholar 

  11. Wang, C., Crud formation and its control in solvent extraction, Proc. International Solvent Extraction Conference ISEC'2005, Fei, W., Liu, H., and Yan, Ch., Eds., Beijing, 2005, p. 1066.

  12. Yagodin, G.A., Tarasov, V.V., and Ivakhno, S.Yu., Condensed interfacial films in metal extraction systems, Hydrometallurgy, 1982, vol. 8, no. 3, p. 293.

    Article  CAS  Google Scholar 

  13. Yagodin, G.A. and Tarasov, V.V., Interfacial phenomena in liquid-liquid extraction, Solvent Extr. Ion Exch., 1984, vol. 2, no. 2, p. 139.

    Article  CAS  Google Scholar 

  14. Kizim, N.F., Nesterova, O.P., and Davydov, Yu.P., Rheological properties of interface in extraction systems with organophosphorus acids, Russ. J. Appl. Chem., 1998, vol. 71, no. 9, p. 1537.

    Google Scholar 

  15. Tomita, A., Kanki, T., Asano, T., and Sano, N., Formation of crystal film at interface in process of extraction of rare earth metals by D2EHPA, J. Chem. Eng. Jpn., 2000, vol. 33, no. 4, p. 661.

    Article  CAS  Google Scholar 

  16. Golubina, E.N., Kizim, N.F., and Chekmarev, A.M., Properties of the material of interphase formations based on lanthanide di-(2-ethylhexyl)phosphate, Russ. J. Phys. Chem. A, 2014, vol. 88, no. 9, p. 1594.

    Article  CAS  Google Scholar 

  17. Golubina, E.N., Kizim, N.F., Sinyugina, E.V., and Chernyshev, I.N., Self-assembled structures based on rare earth element salts in the interfacial layer of a liquid / liquid system, Mendeleev Commun., 2018, vol. 28, no. 1, p. 110.

    Article  CAS  Google Scholar 

  18. Sinegribova, O.A., Chizhevskaya, S.V., Glagolenko, I.Yu., and Klimenko, O.M., Effect of silicic acid on mass transfer in extraction of mineral acids and zirconium nitrate to TBP, Russ. J. Inorg. Chem., 1996, vol. 41, no. 11, p. 1801.

    Google Scholar 

  19. Stoyanov, E.S., IR spectroscopic investigation of the structure of polymeric uranyl di(2-ethylhexyl)phosphate molecules in C6H6 and CCl4 solutions, J. Struct. Chem., 1994, vol. 35, no. 6, p. 804.

    Article  Google Scholar 

  20. Stoyanov, E.S., Mikhailov, V.A., Petrukhin, O.M., et al., A study of complexes yielded by HNO3 Fe(III) and Eu(III) extraction from nitrate media with acidic Zr(IV) and Hf(IV) di-2-ethylhexylphsphates, Solvent Extr. Ion Exch., 1991, vol. 9, no. 5, p. 787.

    Article  CAS  Google Scholar 

  21. Thiyagarajan, P., Diamond, H., Danesi, P.R., and Horwitz, E.P., Small-angle neutron-scattering studies of cobalt(II) organophosphorus polymers in deuteriobenzene, Inorg. Chem., 1987, vol. 26, no. 25, p. 4209.

    Article  CAS  Google Scholar 

  22. Suglobov, D.N., Trifonov, Yu.I., Legin, E.K., and Tutov, A.G., Dehp complexes of lanthanides (III) and actinides (III), J. Alloys Compd., 1994, vols. 213–214, p. 523.

    Article  Google Scholar 

  23. Antico, E., Masana, A., Hidalgo, M., et al., Solvent extraction of yttrium from chloride media by di(2-ethylhexyl)phosphoric acid in kerosene. Speciation studies and gel formation, Anal. Chim. Acta, 1996, vol. 327, p. 267.

    Article  CAS  Google Scholar 

  24. Scharf, C., Ditze, A., Schwerdtfeger, K., et al., Investigation of the structure of neodymium-di-(2-ethylhexyl) phosphoric acid combinations using electrospray ionization and matrix-assisted laser desorption ionization mass spectrometry and nuclear magnetic resonance spectroscopy, Metall. Mater. Trans. B, 2005, vol. 36, p. 429.

    Article  Google Scholar 

  25. Yurtov, E.V., Murashova, N.M., and Datsenko, A.M., Gel formation in extraction of terbium by bis(2-ethylhexyl) hydrogen phosphate, Russ. J. Inorg. Chem., 2006, vol. 51, no. 4, p. 670.

    Article  Google Scholar 

  26. Yurtov, E.V. and Murashova, N.M., Gels, emulsions, and liquid crystals in extraction systems with di(2-ethylhexyl)phosphoric acid, Theor. Found. Chem. Eng., 2007, vol. 41, no. 5, p. 738.

    Article  CAS  Google Scholar 

  27. Yurtov, E.V. and Murashova, N.M., Gelation in extraction systems with basic copper(II) and neodymium(III) alkyl phosphates, Russ. J. Appl. Chem., 2002, vol. 75, no. 7, p. 1064.

    Article  CAS  Google Scholar 

  28. Rao, P.R.V. and Kolarik, Z., A review of third phase formation in extraction of actinides by neutral organophosphorus extractants, Solvent Extr. Ion Exch., 1996, vol. 14, no. 6, p. 955.

    Article  CAS  Google Scholar 

  29. Durain, J., Bourgeois, D., Bertrand, M., and Meyer, D., Comprehensive studies on third phase formation: Application to U(VI)/Th(IV) mixtures extracted by TBP in N-dodecane, Solvent Extr. Ion Exch., 2019, vol. 37, no. 5, p. 328.

    Article  CAS  Google Scholar 

  30. Rama Swami, K., Venkatesan, K.A., and Antony, M.P., Role of phase modifiers in controlling the third-phase formation during the solvent extraction of trivalent actinides, Solvent Extr. Ion Exch., 2019, vol. 37, no. 7, p. 500.

    Article  CAS  Google Scholar 

  31. Chandrasekar, A., Sivaraman, N., Ghanty, T.K., and Suresh, A., Experimental evidence and quantum chemical insights into extraction and third phase aggregation trends in Ce(IV) organophosphates, Sep. Purif. Technol., 2019, vol. 217, p. 62.

    Article  CAS  Google Scholar 

  32. Wesling, P., Mullich, U., Guerinoni, E., et al., Solvent extraction of An(III) and Ln(III) using TODGA in aromatic diluents to suppress third phase formation, Hydrometallurgy, 2020, vol. 192, no. 3, article no. 105248.

    Article  CAS  Google Scholar 

  33. Berger, C., Marie, C., Guillamont, D., et al., Extraction of uranium(VI) and plutonium(IV) with tetra-alkylcarbamides, Solvent Extr. Ion Exch., 2019, vol. 37, no. 2, p. 111.

    Article  CAS  Google Scholar 

  34. Zilberman, B.Ya., Fedorov, Yu.S., Borovikov, E.A., et al., Extraction of uranium into a third phase of thorium nitrate – tributyl phosphate, J. Radioanal. Nucl. Chem., 1991, vol. 150, no. 2, p. 363.

    Article  CAS  Google Scholar 

  35. Fu, X., Xiaopeng, H., Zuhua, Z., et al., Three phase extraction study. I. Tri-butyl phosphate-kerosene/ H2SO4–H2O extraction system, Colloids Surf., A, 1999, vol. 152, p. 335.

    Article  CAS  Google Scholar 

  36. Szymanowski, J., Cote, G., and Blondet, I., Interfacial activity of bis(2-ethylhexyl) phosphoric acid in model liquid-liquid extraction systems, Hydrometallurgy, 1997, vol. 44, nos. 1–2, p. 163.

    Article  CAS  Google Scholar 

  37. Gaonkar, A.G. and Neuman, R.D., Interfacial activity, extractant selectivity, and reversed micellization in hydrometallurgical liquid/liquid extraction systems, J. Colloid Interface Sci., 1987, vol. 119, no. 1, p. 251.

    Article  CAS  Google Scholar 

  38. Faure, A., Tistcheko, A.M., Zemb, T., and Chachaty, C., Aggregation and dynamical behavior in sodium diethylhexylphosphate/water/benzene inverted micelles, J. Phys. Chem., 1985, vol. 89, no. 15, p. 3373.

    Article  CAS  Google Scholar 

  39. Feng, K.I. and Schelly, Z.A., Equilibrium properties of crystallites and reverse micelles of sodium bis(2-ethylhexyl)phosphate in benzene, J. Phys. Chem., 1995, vol. 99, no. 47, p. 17207.

    Article  CAS  Google Scholar 

  40. Yu, Z.-J. and Neuman, R.D., Reversed micellar solution-to-bicontinuous microemulsion transition in sodium bis(2-ethylhexyl)phosphate/n-heptane/water system, Langmuir, 1995, vol. 11, no. 4, p. 1981.

    Google Scholar 

  41. Steytler, D.C., Sargeant, D.L., Welsh, G.E., et al., Ammonium bis(ethylhexyl) phosphate: A new surfactant for microemulsions, Langmuir, 1996, vol. 12, no. 22, p. 5312.

    Article  CAS  Google Scholar 

  42. Steytler, D.C., Jenta, T.R., and Robinson, B.H., Structure of reversed micelles formed by metal salts of bis(ethylhexyl) phosphoric acid, Langmuir, 1996, vol. 12, no. 6, p. 1483.

    Article  CAS  Google Scholar 

  43. Neuman, R.D. and Park, S.J., Characterization of association microstructures in hydrometallurgical nickel extraction by di(2-ethylhexyl)phosphoric acid, J. Colloid Interface Sci., 1992, vol. 152, no. 1, p. 41.

    Article  CAS  Google Scholar 

  44. Zhou, N., Wu, J., Yu, Z., et al., Investigation of aggregation in solvent extraction of lanthanides by acidic extractants (organophosphorus and naphthenic acid), Sci. China, Ser. B: Chem., 1997, vol. 40, no. 1, p. 61.

    Article  CAS  Google Scholar 

  45. Neuman, R.D., Zhou, N., Wu, J., et al., General model for aggregation of metal-extractant complexes in acidic organophosphorus solvent extraction systems, Sep. Sci. Technol., 1990, vol. 25, nos. 13–15, p. 1655.

    Article  CAS  Google Scholar 

  46. Jääskeläinen, E. and Paatero, E., Properties of the ammonium form of Versatic 10 in a liquid–liquid extraction system, Hydrometallurgy, 1999, vol. 51, no. 1, p. 47.

    Article  Google Scholar 

  47. Shioi, A., Harada, M., and Tanabe, M., X-ray and light scattering from oil-rich microemulsions containing sodium bis(2-ethylhexyl) phosphate, Langmuir, 1996, vol. 12, no. 13, p. 3201.

    Article  CAS  Google Scholar 

  48. Bukar, N.V., Kim, V., Chekmarev, A.M., et al., Phase equilibria in the four-component aqueous-organic systems containing sodium di-2-ethylhexyl phosphate and nonelectrolytes, Colloid J., 1996, vol. 58, no. 4, p. 423.

    CAS  Google Scholar 

  49. Lopian, T., Dourdain, S., Kunz, W., and Zemb, T., A formulator’s cut of the phase prism for optimizing selective metal extraction, Colloids Surf., A, 2018, vol. 557, no. 1, p. 2.

    Article  CAS  Google Scholar 

  50. Yurtov, E.V. and Murashova, N.M., Phase equilibria and nonequilibrium structures in the sodium di-2-ethylhexyl phosphate–decane–water system, Colloid J., 2004, vol. 66, no. 5, p. 629.

    Article  CAS  Google Scholar 

  51. Murashova, N.M., Polyakova, A.S., and Yurtov, E.V., The influence of di-(2-ethylhexyl)phosphoric acid on the properties of microemulsion in the sodium di-(2-ethylhexyl)phosphate-di-(2-ethylhexyl)phosphoric acid-decane-water system, Colloid J., 2018, vol. 80, no. 5, p. 513.

    Article  CAS  Google Scholar 

  52. Osseo-Asare, K., Enhanced solvent extraction with water-in-oil microemulsions, Sep. Sci. Technol., 1988, vol. 23, nos. 12–13, p. 1269.

    Article  CAS  Google Scholar 

  53. Bukar, N.V., Kim, V., Olenicheva, O.O., et al., Effect of octanol-1 on extraction of metals by di-2-ethylhexylphosphoric acid, Russ. J. Inorg. Chem., 1999, vol. 44, no. 7, p. 1147.

    Google Scholar 

  54. Brejza, E.V. and Perez de Ortiz, E.S., Phenomena affecting the equilibrium of Al(III) and Zn(II) extraction with Winsor II microemulsions, J. Colloid Interface Sci., 2000, vol. 227, no. 1, p. 244.

    Article  CAS  PubMed  Google Scholar 

  55. Szymanowski, J. and Tondre, C., Kinetics and interfacial phenomena in classical and micellar extraction systems, Solvent Extr. Ion Exch., 1994, vol. 12, no. 4, p. 873.

    Article  CAS  Google Scholar 

  56. Nitsch, W., Plucinski, P., and Ehrlenspiel, J., Connection of ion and water exchange between an aqueous and a microemulsion phase, J. Phys. Chem. B, 1997, vol. 101, no. 20, p. 4024.

    Article  CAS  Google Scholar 

  57. Guo, Y., Li, H.-Y., Yuan, Y.-H., et al., Microemulsion extraction: An efficient way for simultaneous detoxification and resource recovery of hazardous wastewater containing V(V) and Cr(VI), J. Hazard. Mater., 2020, vol. 386, article no. 121948.

    Article  CAS  PubMed  Google Scholar 

  58. Yang, X., Jie, F., Wang, B., and Bai, Z., High-efficient synergistic extraction of Co(II) and Mn(II) from wastewater via novel microemulsion and annular centrifugal extractor, Sep. Purif. Technol., 2019, vol. 209, p. 997.

    Article  CAS  Google Scholar 

  59. Sun, M., Liu, S., and Zhang, Y., Insights into the saponification process of di(2-ethylhexyl) phosphoric acid extractant: Thermodynamics and structural aspects, J. Mol. Liq., 2019, vol. 280, p. 252.

    Article  CAS  Google Scholar 

  60. Jie, F., Bai, Z., and Yang, X., Extraction of Mn(II) from NaCl solution by NaCl/sodium oleate/n-pentanol/n-heptane microemulsion system, Sep. Sci. Technol., 2018, vol. 55, no. 9, p. 1351.

    Article  CAS  Google Scholar 

  61. Guo, Y., Li, H.-Y., Lin, M.-M., and Xie, B., Extraction of vanadium from vanadium-containing APV-precipitated wastewater by W/O microemulsion system, Rare Metal Technology 2018, The Minerals, Metals & Materials Series, Kim, H., Wesstrom, B., Alam, S., Ouchi, T., Azimi, G., Neelameggham, N.R., Wang, S., and Guan, X., Eds., Cham: Springer, 2018, p. 309.

    Google Scholar 

  62. Lou, Z., Gui, X., Zang, S., et al., Extraction of Re(VII) from hydrochloric acid medium by N263/TBP/n-heptane/NaCl microemulsion, Hydrometallurgy, 2016, vol. 165, p. 329.

    Article  CAS  Google Scholar 

  63. Zheng, Y., Fang, L., Yan, Y., et al., Extraction of palladium (II) by a silicone ionic liquid-based microemulsion system from chloride medium, Sep. Purif. Technol., 2016, vol. 169, p. 289.

    Article  Google Scholar 

  64. Lou, Z., Guo, C., Feng, X., et al., Selective extraction and separation of Re(VII) from Mo(VI) by TritonX-100/N235/iso-amyl alcohol/n-heptane/NaCl microemulsion system, Hydrometallurgy, 2015, vol. 157, p. 199.

    Article  CAS  Google Scholar 

  65. Shang, K., Yang, Y.Z., Guo, J.X., et al., Extraction of cobalt by the AOT microemulsion system, J. Radioanal. Nucl. Chem., 2012, vol. 291, no. 3, p. 629.

    Article  CAS  Google Scholar 

  66. Gao, S., Shen, X., Chen, Q., and Gao, H., Solvent extraction of thorium(IV) using W/O microemulsion, Sci. China: Chem., 2012, vol. 55, no. 9, p. 1712.

    Article  CAS  Google Scholar 

  67. Wang, W., Yang, Y.Z., Zhao, H., et al., Extraction of europium by sodium oleate/pentanol/heptane/NaCl microemulsion system, J. Radioanal. Nucl. Chem., 2012, vol. 292, no. 3, p. 1093.

    Article  CAS  Google Scholar 

  68. Tong, Y., Han, L., and Yang, Y., Microemulsion extraction of gold(III) from hydrochloric acid medium using ionic liquid as surfactant and extractant, Ind. Eng. Chem. Res., 2012, vol. 51, no. 50, p. 16438.

    Article  CAS  Google Scholar 

  69. Lu, W., Lu, Y., Liu, F., et al., Extraction of gold(III) from hydrochloric acid solutions by CTAB/n-heptane/iso-amyl alcohol/Na2SO3 microemulsion, J. Hazard. Mater., 2011, vol. 186, nos. 2–3, p. 2166.

    Article  CAS  PubMed  Google Scholar 

  70. Bulavchenko, A.I., Podlipskaya, T.Yu., and Arymbaeva, A.T., Extraction-electrophoretic concentration of gold by reverse mixed micelles of Triton N-42 and AOT, Sep. Sci. Technol., 2010, vol. 46, no. 1, p. 54.

    Article  CAS  Google Scholar 

  71. Podlipskaya, T.Yu., Bulavchenko, A.I., and Sheludyakova, L.A., Study of water properties during Pt(IV) and Au(III) extraction by Triton N-42 reverse micelles from acid sulphate-chloride solutions, J. Struct. Chem., 2011, vol. 52, no. 5, p. 980.

    Article  CAS  Google Scholar 

  72. Tonova, K. and Lazarova, Z., Reversed micelle solvents as tools of enzyme purification and enzyme-catalyzed conversion, Biotechnol. Adv., 2008, vol. 26, p. 516.

    Article  CAS  PubMed  Google Scholar 

  73. Sun, X. and Bandara, N., Applications of reverse micelles technique in food science: A comprehensive review, Trends Food Sci. Technol., 2019, vol. 91, p. 106.

    Article  CAS  Google Scholar 

  74. Yurtov, E.V. and Murashova, N.M., Leaching of metals with extractant-containing microemulsions, Theor. Found. Chem. Eng., 2011, vol. 45, no. 5, p. 726. https://doi.org/10.1134/S0040579511050174

    Article  CAS  Google Scholar 

  75. Kulov, N.N., Some problems of separation of mixtures, Theor. Found. Chem. Eng., 2007, vol. 41, no. 1, pp. 1–12. https://doi.org/10.1134/S0040579507010010

    Article  CAS  Google Scholar 

  76. Lupachev, E.V., Polkovnichenko, A.V., Kvashnin, S.Ya., Lotkhov, V.A., and Kulov, N.N., Batch reactive distillation in bromodifluoroacetic acid synthesis technology, Theor. Found. Chem. Eng., 2019, vol. 53, no. 1, pp. 1–12. https://doi.org/10.1134/S004057951901010X

    Article  CAS  Google Scholar 

  77. Lotkhov, V.A., Kvashnin, S.Ya., and Kulov, N.N., Effect of separating agent in extractive distillation, Theor. Found. Chem. Eng., 2020, vol. 54, no. 1, pp. 172–177. https://doi.org/10.1134/S0040579520010145

    Article  CAS  Google Scholar 

  78. Murashova, N.M., Levchishin, S.Yu., and Yurtov, E.V., Effect of bis-(2-ethylhexyl)phosphoric acid on sodium bis-(2-ethylhexyl)phosphate microemulsion for selective extraction of non-ferrous metals, J. Surfactants Deterg., 2014, vol. 17, no. 6, p. 1249.

    Article  CAS  Google Scholar 

  79. Murashova, N.M., Levchishin, S.Yu., and Yurtov, E.V., Leaching of metals with microemulsions containing bis-(2-ethyhexyl)phosphoric acid or tributylphosphate, Hydrometallurgy, 2018, vol. 175, p. 278.

    Article  CAS  Google Scholar 

  80. Polyakova, A.S., Murashova, N.M., and Yurtov, E.V., Microemulsions in sodium dodecyl sulphate – 1-butanol–extractant–kerosene–water systems for extracting nonferrous metals from oxide raw materials, Russ. J. Appl. Chem., 2020, vol. 93, no. 2, p. 244.

    Article  CAS  Google Scholar 

  81. Smith, E.L., Abbott, A.P., and Ryder, K.S., Deep eutectic solvents (DESs) and their applications, Chem. Rev., 2014, vol. 114, no. 21, pp. 11060–11082. https://doi.org/10.1021/cr300162p

    Article  CAS  PubMed  Google Scholar 

  82. Farooq, M.Q., Abbasi, N.M., and Anderson, J.L., Deep eutectic solvents in separations: Methods of preparation, polarity, and applications in extractions and capillary electrochromatography, J. Chromatogr. A, 2020, vol. 1633, article no. 461613.

    Article  CAS  PubMed  Google Scholar 

  83. Murashova, N.M., Levchishin, S.Yu., Subcheva, E.N., et al., Chemical polishing of aluminum using acid-containing reverse microemulsions, Prot. Met. Phys. Chem. Surf., 2020, vol. 56, no. 3, p. 560.

    Article  CAS  Google Scholar 

  84. Voshkin, A.A., Shkinev, V.M., and Zakhodyaeva, Yu.A., A new extraction method for the preparation of zinc oxide nanoparticles in aqueous two-phase systems, Russ. J. Phys. Chem. A, 2017, vol. 91, pp. 226–228. https://doi.org/10.1134/S0036024417020340

    Article  CAS  Google Scholar 

  85. Shkinev, V.M., Zakhodyaeva, Yu.A., Dzhenloda, R.Kh., Mokhodoeva, O.B., and Voshkin, A.A., Synthesis of magnetic iron oxide nanoparticles at the interface of the polyethylene glycol–ammonium sulfate–water extraction system, Mendeleev Commun., 2017, vol. 27, no. 5, pp. 485–486. https://doi.org/10.1016/j.mencom.2017.09.018

    Article  CAS  Google Scholar 

  86. Kinhal, K.V., Sinha, S., Ravisankar, A., et al., Simultaneous synthesis and separation of nanoparticles using aqueous two-phase systems, ACS Sustainable Chem. Eng., 2020, vol. 8, no. 7, p. 3013.

    Article  CAS  Google Scholar 

  87. Bulavchenko, A.I., Arymbaeva, A.T., Bulavchenko, O.A., et al., The preparation of gold nanoparticles in Triton N-42 reverse micelles after preliminary concentration from acid sulphate-chloride solutions, Russ. J. Phys. Chem. A, 2006, vol. 80, no. 12, p. 1980.

    Article  CAS  Google Scholar 

  88. Bulavchenko, A.I., Podlipskaya, T.Yu., Demidova, M.G., et al., The formation of Me(AOT)n micelles as nanoreactors, crystallizers, and charging agents: Cation-exchange solvent extraction versus direct injection solubilization, Solvent Extr. Ion Exch., 2020, vol. 38, no. 4, p. 455.

    Article  CAS  Google Scholar 

  89. Hu, Z., Hu, X., Cui, W., et al., Three phase extraction study II TBP-kerosene/H2SO4–TiOSO4 system and the preparation of ultrafine powder of TiO2, Colloids Surf., A, 1999, vol. 155, nos. 2–3, p. 386.

    Google Scholar 

  90. Yu, L., Gu, G., Yang, J., et al., Preparation of mesoporous ZrO2 with the middle phase formed in a trioctyl (or alkyl) phosphinic oxide–kerosene/HCl–ZrOCl2 extraction system, J. Colloid Interface Sci., 2003, vol. 265, no. 1, p. 101.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, Y. and Chen, J., Controllable preparation of CeF3:Tb3+ nanostructures with different morphologies from an ionic liquid-based extraction system, Colloids Surf., A, 2015, vol. 470, p. 130.

    Article  CAS  Google Scholar 

  92. Zhang, Y. and Chen, J., Interface mechanism of a rapid and mild aqueous-organic method to prepare CePO4 nanostructures, Colloids Surf., A, 2014, vol. 444, p. 246.

    Article  CAS  Google Scholar 

  93. Khol’kin, A.I. and Patrusheva, T.N., The extraction-pyrolytic method is 25 years old: Results and prospects, Theor. Found. Chem. Eng., 2016, vol. 50, pp. 785–792. https://doi.org/10.1134/S0040579516050109

    Article  CAS  Google Scholar 

  94. Patrusheva, T.N., Kirik, S.D., Mikhlin, Yu.L., and Khol’kin, A.I., Structural study of Li–Fe–P–O powder synthesized by the extraction-pyrolytic method, Theor. Found. Chem. Eng., 2019, vol. 53, no. 4, pp. 615–619. https://doi.org/10.1134/S0040579519040055

    Article  CAS  Google Scholar 

  95. Tondre, C., Surfactant-based colloidal particles as the extracting phase for the removal of metal ions from aqueous environments: Kinetic and applied aspects, Surfactant-Based Separations, ACS Symposium Series, vol. 740, Washington, DC: American Chemical Society, 2000, ch. 10, p. 139.

  96. Szymanowski, J., Surfactant enhanced non-classical extraction, J. Radioanal. Nucl. Chem., 2000, vol. 246, no. 3, p. 635.

    Article  CAS  Google Scholar 

  97. Yamini, Y., Feizi, N., and Moradi, M., Surfactant-based extraction systems, Liquid-Phase Extraction, Handbooks in Separation Science, Poole, C.F, Ed., Amsterdam: Elsevier, 2020, p. 209.

  98. Verma, G., Paliwal, P., Kumar, S., et al., Effect of di-(2-ethylhexyl) phosphoric acid on microstructure, cloud point and uranyl ion binding competence of Triton X-100 micelles, Colloids Surf., A, 2015, vol. 468, p. 262.

    Article  CAS  Google Scholar 

  99. Nguyen, V.T., Lee, J., Kim, M., et al., Sustainable extraction and separation of precious metals from hydrochloric media using novel ionic liquid-in-water microemulsion, Hydrometallurgy, 2017, vol. 171, p. 344.

    Article  CAS  Google Scholar 

  100. Xiao, F., Wang, Y., Shen, X., et al., Effect of SDS on kinetics for Co-Cyanex 272 complex in a neutral micellar phase, Hydrometallurgy, 2017, vol. 167, p. 36.

    Article  CAS  Google Scholar 

  101. Liang, H., Chen, Q., Xu, C., and Shen, X., Selective cloud point extraction of uranium from thorium and lanthanides using Cyanex 301 as extractant, Sep. Purif. Technol., 2019, vol. 210, p. 835.

    Article  CAS  Google Scholar 

  102. Gulyaev, Yu.V., Belgorodskii, V.S., and Kosheleva, M.K., Review of papers presented at the “Second International Kosygin Readings: Energy- and Resource-Efficient Environmentally Safe Technologies and Equipment,” an International Scientific and Technical Symposium Celebrating the 100th Anniversary of the Kosygin State University of Russia, Theor. Found. Chem. Eng., 2020, vol. 54, no. 3, pp. 522–527. https://doi.org/10.1134/S0040579520030057

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Murashova.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murashova, N.M., Yurtov, E.V. State of the Art and Prospects for Studies of Structure Formation in Extraction Systems with Metal Compounds. Theor Found Chem Eng 56, 53–68 (2022). https://doi.org/10.1134/S0040579521060075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579521060075

Keywords:

Navigation