Skip to main content
Log in

Optimum Conditions for Extraction of Chitin and Chitosan from Callinectes amnicola Shell Waste

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The optimization of process variables for the extraction of chitin and chitosan from crab (Callinectes amnicola) shell waste and for the degree of deacetylation (DDA) of extracted chitosan was investigated using response surface methodology (RSM). The respective effects of four and three process parameters on the extraction yields of chitin and chitosan and on the DDA of chitosan were examined. The optimized chitin extraction conditions based on the yield (4.84 g or 19.36%) were obtained to be 3.25 M HCl solution, 18.55 h demineralization time, 2.39 M NaOH solution and 2 h deproteinization time, while the maximum chitosan yield (5.98 g or 13.29%) was obtained at modelled optimized conditions of 50% w/w NaOH solution, 85.05°C deacetylation temperature, and 133.64 min deacetylation time. The modelled optimization conditions for the highest DDA of chitosan produced from crab shell waste were 50% w/w NaOH solution, 84.46°C deacetylation temperature, and 187 min deacetylation time, with the corresponding predicted DDA of 84.20%. Excellent agreement was obtained between experimental DDA of chitosan (84.50%) and the predicted value, with the percentage error being ±0.36. Independent predicted robust quadratic models for predicting the yields of chitin and chitosan extraction and the DDA of chitosan from the crab shell waste were obtained, validated and verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Gerente, C., Lee, V.K.C., Le Cloire, P., and McKay, G., Application of chitosan for the removal of metals from wastewaters by adsorption—Mechanisms and models review, Crit. Rev. Environ. Sci. Technol., 2007, vol. 37, p. 41. https://doi.org/10.1080/10643380600729089

    Article  CAS  Google Scholar 

  2. Nithya, A., Jothivenkatachalam, K., Prabhu, S., and Jeganathan, K., Chitosan based nanocomposite materials as photocatalyst – A review, Mater. Sci. Forum, 2014, vol. 781, p. 79. https://doi.org/10.4028/www.scientific.net/MSF.781.79

    Article  CAS  Google Scholar 

  3. Kamboj, S., Singh, K., Tiwary, A., and Rana, V., Optimization of microwave assisted Maillard reaction to fabricate and evaluate corn fiber gum-chitosan IPN films, Food Hydrocolloids, 2015, vol. 44, p. 260. https://doi.org/10.1016/j.foodhyd.2014.08.021

    Article  CAS  Google Scholar 

  4. No, H.K. and Meyers, S.P., Preparation and characterization of chitin and chitosan – A review, J. Aquat. Food Prod. Technol., 1995, vol. 4, p. 27.

    Article  CAS  Google Scholar 

  5. Chitin Handbook, Muzzarelli, R.A.A. and Peter, M.G., Eds., Grottammare, Italy: Atec, European Chitin Society, 1997.

    Google Scholar 

  6. Younes, I. and Rinaudo, M., Chitin and chitosan preparation from marine sources. Structure, properties and applications, Mar. Drugs, 2015, vol. 13, no. 3, pp. 1133–1174. https://doi.org/10.3390/md13031133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Akbuga, J. and Bergisadi, N., 5-Fluorouracil-loaded chitosan microspheres: Preparation and release characteristics, J. Microencapsulation, 1996, vol. 13, p. 161.

    Article  CAS  Google Scholar 

  8. Ko, J.A., Park, H.J., Park, Y.S., Hwang, S.J., and Park, J.B., Chitosan microparticle preparation for controlled drug release by response surface methodology, J. Microencapsulation, 2003, vol. 20, p. 791.

    Article  CAS  Google Scholar 

  9. Illum, I., Chitosan and its use as a pharmaceutical excipient, Pharm. Res., 1998, vol. 15, p. 1326.

    Article  CAS  Google Scholar 

  10. Seo, T., Kanbara, T., and Lijima, T., Sorption of methyl-orange by chitosan gels having hydrophobic groups, J. Appl. Polym. Sci., 1988, vol. 36, p. 1443.

    Article  CAS  Google Scholar 

  11. Teixeira, M.A., Paterson, W.J., Dunn, E.J., Li, Q.I., Hunter, B.K., and Goosen, M.F.A., Assessment of chitosan gels for the controlled release of agrochemicals, Ind. Eng. Chem. Res., 1990, vol. 29, p. 1205.

    Article  CAS  Google Scholar 

  12. Hirano, S., Hayashi, M., and Okuno, S., Soybean seeds surface-coated with depolymerized chitins: Chitinase activity as a predictive index for the harvest of beans in field culture, J. Sci. Food Agric., 2001, vol. 81, p. 205.

    Article  CAS  Google Scholar 

  13. Ren, H.F., Endo, H., and Hayashi, T., Antioxidative and antimutagenic activities and polyphenol content of pesticide-free and organically cultivated green vegetables using water-soluble chitosan as a soil modifier and leaf surface spray, J. Sci. Food Agric., 2001, vol. 81, p. 1426.

    Article  CAS  Google Scholar 

  14. Rhoades, J. and Roller, S., Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods, Appl. Environ. Microbiol., 2000, vol. 66, p. 80.

    Article  CAS  Google Scholar 

  15. Srinivasa, P.C., Baskaran, R., Ramesh, M.N., Prashanth, K.V.H., and Tharanathan, R.N., Storage studies of mango packed using biodegradable chitosan film, Eur. Food Res. Technol., 2002, vol. 215, p. 504.

    Article  CAS  Google Scholar 

  16. Egger, G., Cameron-Smith, D., and Stanton, R., The effectiveness of popular, non-prescription weight loss supplements, Med. J. Aust., 1999, vol. 171, p. 604.

    Article  CAS  Google Scholar 

  17. Chiou, M.S. and Li, H.Y., Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads, Chemosphere, 2003, vol. 50, p. 1095.

    Article  CAS  Google Scholar 

  18. Wong, Y.C., Szeto, Y.S., Cheung, W.H. and McKay, G., Equilibrium studies for acid dye adsorption onto chitosan, Langmuir, 2003, vol. 19, p. 7888.

    Article  CAS  Google Scholar 

  19. Ikeda, M., Gotanda, T., Imamura, Y., and Hirakawa, C., US Patent 5919696, 1999.

  20. Saldin, V.I., Sukhovey, V.V., Ignatieva, L.N., Slobodyuk, A.B., Buznik, V.M., and Mikhailov, Yu.M., Isolation of the dodecahydro-closo-dodecaborate anion with chitosan from aqueous solutions, Theor. Found. Chem. Eng., 2010, vol. 44, no. 4, pp. 467–470. https://doi.org/10.1134/S0040579510040172

    Article  CAS  Google Scholar 

  21. Wagner, M. and Nicell, J.A., Detoxification of phenolic solutions with horseradish peroxidase and hydrogen peroxide, Water Res., 2002, vol. 36, p. 4041.

    Article  CAS  Google Scholar 

  22. Juang, R.S. and Chiou, C.H., Feasibility of the use of polymer-assisted membrane filtration for brackish water softening, J. Membr. Sci., 2001, vol. 187, p. 119.

    Article  CAS  Google Scholar 

  23. Arai, S. and Akiya, F., US Patent 4111810, 1978.

  24. Eikebrokk, B. and Saltnes, T., NOM removal from drinking water by chitosan coagulation and filtration through lightweight expanded clay aggregate filters, J. Water Supply: Res. Technol.–AQUA, 2002, vol. 51, pp. 323–332. https://doi.org/10.2166/aqua.2002.0029

    Article  CAS  Google Scholar 

  25. Abdou, E.S., Nagy, K.S.A., and Elsabee, M.Z., Extraction and characterization of chitin and chitosan from local sources, Bioresour. Technol., 2008, vol. 99, p. 1359.

    Article  CAS  Google Scholar 

  26. Limam, Z., Selmi, S., Sadok, S., and El Abed, A., Extraction and characterization of chitin and chitosan from crustacean by-products: Biological and physiochemical properties, Afr. J. Biotechnol., 2011, vol. 10, p. 640.

    CAS  Google Scholar 

  27. Al-Sagheer, F.A., Al-Sughayer, M.A., Muslim, S., and Elsabee, M.Z., Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf, Carbohydr. Polym., 2009, vol. 77, p. 410.

    Article  CAS  Google Scholar 

  28. Bolat, Y., Bilgin, S., Günlü, A., Izci, L., Koca, S.B., Çetinkaya, S., and Koca H.U., Chitin-chitosan yield of freshwater crab (Potamon potamios, Olivier 1804) shell, Pak. Vet. J., 2010, vol. 30, no. 4, pp. 227–231.

    Google Scholar 

  29. Kaya, M., Akyuz, B., Bulut, E., Sargin, I., Eroglu, F., and Tan, G., Chitosan nanofiber production from drosophila by electrospinning, Int. J. Biol. Macromol., 2016, vol. 92, p. 49.

    Article  CAS  Google Scholar 

  30. Toan, N.V., Production of chitin and chitosan from partially autolyzed shrimp shell materials, Open Biomater. J., 2009, vol. 1, p. 21.

    Article  Google Scholar 

  31. Ghorbel-Bellaaj, O., Hajji, S., Younes, I., Chaabouni, M., Nasri, M., and Jellouli, K., Optimization of chitin extraction from shrimp waste with Bacillus pumilus A1 using response surface methodology, Int. J. Biol. Macromol., 2013, vol. 61, p. 243.

    Article  CAS  Google Scholar 

  32. Hajji, S., Younes, I., Ghorbel-Bellaaj, O., Hajji, R., Rinaudo, M., Nasri, M., and Jellouli, K., Structural differences between chitin and chitosan extracted from three different marine sources, Int. J. Biol. Macromol., 2014, vol. 65, p. 298.

    Article  CAS  Google Scholar 

  33. Vazquez, J.A., Ramos, P., Mirón, J., Vakarcel, J., Sotelo, C.G., and Pérez-Martin, R.I., Production of chitin from Penaues vannamei by-products to pilot plant scale using a combination of enzymatic and chemical processes and subsequent optimization of the chemical production of chitosan by response surface methodology, Mar. Drugs, 2017, vol. 15, no. 6, p. 180.

    Article  Google Scholar 

  34. Omara, N.A., Elsebale, E.M., Kassab, H.E., and Salama, A.A., Production of chitosan from shrimp shells by microwave technique and its use in minced beef preservation, Slov. Vet. Res., 2019, vol. 55, suppl. 22, p. 773.

    Google Scholar 

  35. Nessa, F., Masum, S.M., Asaduzzaman, M., Roy, S.K., Hossain, M.M., and Johan, M.S., A process for the preparation of chitin and chitosan from prawn shell waste, Bangladesh J. Sci. Ind. Res., 2010, vol. 45, p. 323.

    Article  CAS  Google Scholar 

  36. Paul, S., Jayan, A., Sasikumar, C.S., and Cherian, S.M., Extraction and purification of chitosan from chitin isolated from sea prawn (Fenneropenaeus indicus), Asian J. Pharm. Clin. Res., 2014, vol. 7, p. 201.

    Google Scholar 

  37. Hossain, M.S. and Iqbal, A., Production and characterization of chitosan from shrimp waste, J. Bangladesh Agric. Univ., 2014, vol. 21, p. 153.

    Article  Google Scholar 

  38. Dimzon, I.K.D. and Knepper, T.P., Degree of deacetylation of chitosan by infrared spectroscopy and partial least squares, Int. J. Biol. Macromol., 2015, vol. 72, p. 939.

    Article  CAS  Google Scholar 

  39. Zakaria, Z., Izzah, Z., Jawaid, M., and Hassan, A., Effect of degree of deacetylation of chitosan on thermal stability and compatibility of chitosan-polyamide blend, BioResources, 2012, vol. 7, p. 5568.

    Article  Google Scholar 

  40. Al-Hassan, A.A., Utilization of waste: Extraction and characterization of chitosan from shrimp byproducts, Civ. Environ. Res., 2016, vol. 8, no. 3, p. 117.

    Google Scholar 

  41. Elich-Ali-Komi, D. and Hamblin, M.R., Chitin and chitosan: Production and application of versatile biomedical nanomaterials, Int. J. Adv. Res., 2016, vol. 4, p. 411.

    Google Scholar 

  42. Younes, I., Ghorbel-Bellaaj, O., Nasri, R., Chaabouni, M., Rinaudo, M., and Nasri, M., Chitin and chitosan preparation from shrimp shells using optimized enzymatic deproteinization, Process Biochem., 2012, vol. 47, no. 12, pp. 2032–2039. https://doi.org/10.1016/j.procbio.2012.07.017

    Article  CAS  Google Scholar 

  43. Zhang, A.J., Qin, Q.L., Zhang, H., Wang, H.T., Li, X., Miao, L., and Wu, Y.J., Preparation and characterisation of food-grade chitosan from housefly larvae, Czech J. Food Sci., 2011, vol. 29, p. 616.

    Article  CAS  Google Scholar 

  44. Le Man, H., Behera, S.K. and Park, H.S., Optimization of operational parameters for ethanol production from Korean foodwaste leachate, Int. J. Environ. Sci. Technol., 2010, vol. 7, p. 157.

    Article  CAS  Google Scholar 

  45. Koocheki, A., Taherian, A.R., Razavi, S., and Bostan, A., Response surface methodology for optimization of extraction yield, viscosity, hue and emulsion stability of mucilage extracted from Lepidium perfoliatum seeds, Food Hydrocolloids, 2009, vol. 23, p. 2369.

    Article  CAS  Google Scholar 

  46. Rai, A., Mohanty, B., and Bhargava, R., Supercritical extraction of sunflower oil: A central composite design for extraction variables, Food Chem., 2016, vol. 192, p. 647.

    Article  CAS  Google Scholar 

  47. Montgomery, D.C., Design and Analysis of Experiments, New York: Wiley, 2001, 5th ed.

    Google Scholar 

  48. Arbia, W., Adour, L., Amrane, A., and Lounici, H., Optimization of medium composition for enhanced chitin extraction from Parapenaeus longirostris by Lactobacillus helveticus using response surface methodology, Food Hydrocolloids, 2013, vol. 31, p. 392.

    Article  CAS  Google Scholar 

  49. Abdel-Salam, H.A., Evaluation of nutritional quality of commercially cultured Indian white shrimp Penaues indicus, Int. J. Nutr. Food Sci., 2013, vol. 2, no. 4, pp. 160–166. https://doi.org/10.11648/j.ijnfs.20130204.11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Olafadehan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olafadehan, O.A., Ajayi, T.O. & Amoo, K.O. Optimum Conditions for Extraction of Chitin and Chitosan from Callinectes amnicola Shell Waste. Theor Found Chem Eng 54, 1173–1194 (2020). https://doi.org/10.1134/S0040579520060081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520060081

Keywords:

Navigation