Skip to main content
Log in

Experimental and CFD Study of Heat Transfer in Spouted Beds: Analysis of Nusselt Number Correlations

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The application of CFD to evaluate heat transfer in spouted beds remains scarce. Furthermore, the few reported studies about this have used a correlation proposed to determine the Nusselt number for fixed and fluidized beds. Therefore, the aim of this work was to investigate the effects of the different correlations in describing heat transfer in a conical spouted bed, using a two-dimensional Euler-Euler approach. Correlations proposed specifically for a spouted bed were implemented by means of a user-defined function. The simulated fluid phase temperatures within the bed were compared with experimental data obtained for a spouted bed operating with sorghum seeds (Sorghum bicolor (L.) Moench). Correlations that take into consideration geometric parameters that are important in spouted bed design were implemented. The comparison among experimental and simulated data indicated the most suitable correlation for description of heat transfer in the spouted bed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Olukoya, I.A., Bellmer, D., Whiteley, J.R., and Aichele, C.P., Evaluation of the environmental impacts of ethanol production from sweet sorghum, Energy Sustainable Dev., 2015, vol. 24, p. 1.

    Article  CAS  Google Scholar 

  2. Wang, M., Chen, Y., Xia, X., Li, J., and Liu, J., Energy efficiency and environmental performance of bioethanol production from sweet sorghum stem based on life cycle analysis, Bioresour. Technol., 2014, vol. 163, p. 74.

    Article  CAS  Google Scholar 

  3. Erkiaga, A., Lopez, G., Amutio, M., Bilbao, J., and Olazar, M., Syngas from steam gasification of polyethylene in a conical spouted bed reactor, Fuel, 2013, vol. 109, p. 461.

    Article  CAS  Google Scholar 

  4. Berghel, J. and Renström, R. Superheated steam drying of sawdust in continuous feed spouted beds – A design perspective, Biomass Bioenergy, 2014, vol. 71, p. 228. https://doi.org/10.1016/j.biombioe.2014.10.004

    Article  CAS  Google Scholar 

  5. Alvarez, J., Amutio, M., Lopez, G., Barbarias, I., Bilbao, J., and Olazar, M., Sewage sludge valorization by flash pyrolysis in a conical spouted bed reactor, Chem. Eng. J., 2015, vol. 273, p. 173.

    Article  CAS  Google Scholar 

  6. Lopez, G., Erkiaga, A., Amutio, M., Bilbao, J., and Olazar, M., Effect of polyethylene co-feeding in the steam gasification of biomass in a conical spouted bed reactor, Fuel, 2015, vol. 153, p. 393.

    Article  CAS  Google Scholar 

  7. Huang, J., Zhang, M., Adhikari, B., and Yang, Z., Effect of microwave air spouted drying arranged in two and three-stages on the drying uniformity and quality of dehydrated carrot cubes, J. Food Eng., 2016, vol. 177, p. 80.

    Article  CAS  Google Scholar 

  8. Melo, J.L.Z., Bacelos, M.S., Pereira, F.A.R., Lira, T.S., and Gidaspow, D., CFD modeling of conical spouted beds for processing LDPE/Al composite, Chem. Eng. Process., 2016, vol. 108, p. 93.

    Article  CAS  Google Scholar 

  9. Brito, R.C., Pádua, T.F., Freire, J.T., and Béttega, R., Effect of mechanical energy on the energy efficiency of spouted beds applied on drying of sorghum [Sorghum bicolor (L) Moench], Chem. Eng. Process., 2017, vol. 117, p. 95.

    Article  Google Scholar 

  10. Hosseini, S.H., Fattahi, M., and Ahmadi, G., Hydrodynamics studies of a pseudo 2D rectangular spouted bed by CFD, Powder Technol., 2015, vol. 279, p. 301.

    Article  CAS  Google Scholar 

  11. Béttega, R., Da Rosa, C.A., Corrêa, R.G., and Freire, J.T., Fluid dynamic study of a semicylindrical spouted bed: Evaluation of the shear stress effects in the flat wall region using computational fluid dynamics, Ind. Eng. Chem. Res., 2009, vol. 48, no. 24, p. 11181.

    Article  Google Scholar 

  12. Da Rosa, C.A. and Freire, J.T., Fluid dynamics analysis of a draft-tube continuous spouted bed with particles bottom feed using CFD, Ind. Eng. Chem. Res., 2009, vol. 48, no. 16, p. 7813.

    Article  CAS  Google Scholar 

  13. Santos, D.A., Alves, G.C., Duarte, C.R., Barrozo, M.A.S., Disturbances in the hydrodynamic behavior of a spouted bed caused by an optical fiber probe: Experimental and CFD study, Ind. Eng. Chem. Res., 2012, vol. 51, no. 9, p. 3801.

    Article  CAS  Google Scholar 

  14. Hosseini, S.H., Ahmadi, G., Razavi, B. S., and Zhong, W., Computational fluid dynamic simulation of hydrodynamic behavior in a two-dimensional conical spouted bed, Energy Fuels, 2010, vol. 24, no. 11, p. 6086.

    Article  CAS  Google Scholar 

  15. Duarte, C.R., Olazar, M., Murata, V.V., and Barrozo, M.A.S., Numerical simulation and experimental study of fluid-particle flows in a spouted bed, Powder Technol., 2009, vol. 188, no. 3, p. 195.

    Article  CAS  Google Scholar 

  16. Barrozo, M.A.S., Duarte, C.R., Epstein, N., Grace, J.R. and Lim, C.J., Experimental and computational fluid dynamics study of dense-phase, transition region, and dilute-phase spouting, Ind. Eng. Chem. Res., 2010, vol. 49, no. 11, p. 5102.

    Article  CAS  Google Scholar 

  17. Moradi, S., Asadi, Z., Moradi, S., Salimi, M., Homami, S.S., and Seydei, M.K., Three dimensional simulation of the effect of draft tube on minimum fluidization velocity in a spouted bed, Theor. Found. Chem. Eng., 2012, vol. 46, no. 5, p. 458.

    Article  CAS  Google Scholar 

  18. Bisognin, P.C., Fusco, J.M., and Soares, C., Heat transfer in fluidized beds with immersed surface: Effect of geometric parameters of surface, Powder Technol., 2016, vol. 297, p. 401.

    Article  CAS  Google Scholar 

  19. Abdelmotalib, H.M., Youssed, M.A.M., Hassan, A.A., Youn, S.B., and Im, I.-T., Numerical study on heat transfer in a conical fluidized bed combustor considering particle elasticity, Int. J. Heat Mass Transfer, 2016, vol. 92, p. 236.

    Article  Google Scholar 

  20. amzehei, M., Rahimzadeh, H., and Ahmadi, G., Computational and experimental study of heat transfer and hydrodynamics in a 2D gas-solid fluidized bed reactor, Ind. Eng. Chem. Res., 2010, vol. 49, no. 11, p. 5110

    Article  CAS  Google Scholar 

  21. Yusuf, R., Halvorsen, B., and Melaaen, M.C., Eulerian-Eulerian simulation of heat transfer between a gas-solid fluidized bed and an immersed tube-bank with horizontal tubes, Chem. Eng. Sci., 2011, vol. 66, p. 1550.

    Article  CAS  Google Scholar 

  22. Ngoh, J. and Lim, E.W.C., Effects of particle size and bubbling behavior on heat transfer in gas fluidized beds, Appl. Therm. Eng., 2016, vol. 105, p. 225.

    Article  Google Scholar 

  23. Abdelmotalib, H.M., Ko, D.G., and Im, I.-T., A study on wall-to-bed heat transfer in a conical fluidized bed combustor, Appl. Therm. Eng., 2016, vol. 99, p. 928.

    Article  Google Scholar 

  24. Abdelmotalib, H.M., Youssed, M.A.M., Hassan, A.A., Youn, S.B., and Im, I.-T., Influence of the specularity coefficient on hydrodynamics and heat transfer in a conical fluidized bed combustor, Int. Commun. Heat Mass Transfer, 2016, vol. 75, p. 169.

    Article  Google Scholar 

  25. Lu, Y., Zhang, T., and Dong, X., Bed to wall heat transfer in supercritical water fluidized bed: Comparison with the gas-solid fluidized bed, Appl. Therm. Eng., 2015, vol. 88, p. 297.

    Article  Google Scholar 

  26. Ehsani, M., Movahedirad, S., and Shahhosseinim, S., The effect of particle properties on the heat transfer characteristics of a liquid-solid fluidized bed heat exchanger, Int. J. Therm. Sci., 2016, vol. 102, p. 111.

    Article  CAS  Google Scholar 

  27. Szafran, R.G. and Kmiec, A., CFD modeling of heat and mass transfer in a spouted bed dryer, Ind. Eng. Chem. Res., 2004, vol. 43, no. 4, p. 1113.

    Article  CAS  Google Scholar 

  28. Fattahi, M., Hosseini, S.H., and Ahmadi, G., CFD simulation of transient gas to particle heat transfer for fluidized and spouted regimes, Appl. Therm. Eng., 2016, vol. 105, p. 385.

    Article  Google Scholar 

  29. Hosseini, S.H., Fattahi, M., and Ahmadi, G., CFD Study of hydrodynamic and heat transfer in a 2D spouted bed: Assessment of radial distribution function, J. Taiwan Inst. Chem. Eng., 2016, vol. 58, p. 107.

    Article  CAS  Google Scholar 

  30. Hosseini, S.H., Fattahi, M., and Ahmadi, G., Investigation of hydrodynamics and heat transfer in pseudo 2D spouted beds with and without draft plates, Braz. J. Chem. Eng., 2017, vol. 34, no. 4, p. 997.

    Article  CAS  Google Scholar 

  31. Hooshdaram, B., Hosseini, S.H., Haghshenasfard, M., Nasr Esfahany, M., and Olazar, M., CFD modeling of heat transfer and hydrodynamics in a draft tube conical spouted bed reactor under pyrolysis conditions: Impact of wall boundary condition, Appl. Therm. Eng., 2017, vol. 127, p. 224.

    Article  Google Scholar 

  32. Gunn, D.J., Transfer of heat or mass to particles in fixed and fluidised beds, Int. J. Heat Mass Transfer, 1978, vol. 21, no. 4, p. 467.

    Article  Google Scholar 

  33. Kmiec, A., Simultaneous heat and mass transfer in spouted beds, Can. J. Chem. Eng., 1975, vol. 53, no. 1, p. 18.

    Article  CAS  Google Scholar 

  34. Kmiec, A., Bed expansion and heat and mass transfer in fluidized beds, PhD Thesis, Wroclaw: Wroclaw Univ. of Technology, 1980.

  35. Saldarriaga, J.F., Aguado, R., Atxutegi, A., Grace, J., Bilbao, J., and Olazar, M., Correlation for calculating heat transfer coefficient in conical spouted beds, Ind. Eng. Chem. Res., 2016, vol. 55, p. 9524.

    Article  CAS  Google Scholar 

  36. Mathur, K.B. and Epstein, N., Spouted Beds, New York: Academic, 1974.

    Google Scholar 

  37. Gidaspow, D., Bezburuah, R., and Ding, J., Hydrodynamics of circulating fluidized beds: Kinetic theory approach, Proc. Seventh Engineering Foundation Conference on Fluidization, Gold Coast, 1992, p. 75.

  38. Schaeffer, D.G., Instability in the evolution equations describing incompressible granular flow, J. Differ. Equations, 1987, vol. 66, p. 19.

    Article  Google Scholar 

  39. Lun, C.K.K., Savage, S.B., Jeffrey, D.J., and Chepurniy, N., Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flowfield, J. Fluid Mech., 1984, vol. 140, p. 223. https://doi.org/10.1017/S0022112084000586

    Article  Google Scholar 

  40. Cunha, F.G., Santos, K.G., Ataíde, C.H., Epstein, N., Barrozo, M.A.S., Annatto powder production in a spouted bed: An experimental and CFD study, Ind. Eng. Chem. Res., 2009, vol. 48, no. 2, p. 976.

    Article  CAS  Google Scholar 

  41. Freitas, L.A.P. and Freire, J.T., Heat transfer in a draft tube spouted bed with bottom solids feed, Powder Technol., 2001, vol. 114, p. 152.

    Article  CAS  Google Scholar 

  42. Malek, M.A. and Lu, B.C.Y., Heat transfer in spouted beds, Can. J. Chem. Eng., 1964, vol. 42, no. 1, p. 14.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by CNPq (grant no. 454475, 2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Béttega.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batista, J.N., Brito, R.C., Freire, J.T. et al. Experimental and CFD Study of Heat Transfer in Spouted Beds: Analysis of Nusselt Number Correlations. Theor Found Chem Eng 54, 1314–1326 (2020). https://doi.org/10.1134/S0040579520060032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520060032

Keywords:

Navigation