Skip to main content
Log in

Methods of the Synthesis of Aluminum Borides from Elemental Substances for Use as High-Energy Materials: A Review

  • TECHNOLOGY OF INORGANIC SUBSTANCES AND MATERIALS
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Two methods of the synthesis of aluminum borides are considered, one of which is the calcination of a mixture of Al and B powders at temperatures from 900 to 1500°C and the other is high-temperature self-propagating synthesis with mechanical preactivation. It is shown that aluminum borides can be synthesized by mechanical activation alone. All these methods give micrometer-sized particles of aluminum borides. The plasma recondensation of an Al–B mixture produces nanodispersed powders of aluminum borides. The activity of the powders with respect to atmospheric oxygen is determined by thermogravimetric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Serebryakova, T.I., Neronov, V.A., and Peshev, P.D., Vysokotemperaturnye boridy (High-Temperature Borides), Moscow: Metallurgiya, 1991.

  2. Abenojar, J., Martinez, M.A., and Velasco, F., Effect of the boron content in the aluminium/boron composite, J. Alloys Compd., 2006, vol. 422, nos. 1–2, pp. 67–72. https://doi.org/10.1016/j.jallcom.2005.11.042

    Article  CAS  Google Scholar 

  3. Guseinov, Sh.L. and Fedorov, S.G., Nanoporoshki alyuminiya, bora, boridov alyuminiya i kremniya v energeticheskikh kondensirovannykh sistemakh (Nanopowders of Aluminum, Boron, and Aluminum and Silicon Borides in Energetic Condensed Systems), Moscow: Torus, 2015.

  4. Energoemkie goryuchie dlya aviatsionnykh i raketnykh dvigatelei (Energy-Intensive Fuels for Aircraft and Rocket Engines), Yanovskii, L.S, Ed., Moscow: Fizmatlit, 2009.

  5. Larina, T.V., Perminov, V.T., Sosnov, A.N., and Neronov, V.A., Methods for producing aluminum and magnesium borides, Geo-Sib., 2007, vol. 4, no. 1, pp. 109–112.

    Google Scholar 

  6. Whittaker, M.L., Synthesis, characterization and energetic performance of metal boride compounds for insensitive energetic materials, MS Thesis, Salt Lake City: Univ. of Utah, 2012.

  7. Kogan, B.S., Lasychenkov, Yu.Ya., Milekhin, Yu.M., Fel’dman, V.D., Matveev, A.A., and Konovalov, I.S., RF Patent 2566768, 2014.

  8. Zhukov, A., Ziatdinov, M., Vorozhtsov, A., Vorozhtsov, S., Bondarchuk, I., Zhukov, I., and Promakhov, V., Energetic borides: Combustion synthesis and properties, Energetic Materials: Performance, Safety and System Applications (Proc. 46th International Annual Conference of the Fraunhofer ICT, Karlsruhe, 2015), Pfinztal: Fraunhofer-Institut für Chemische Technologie ICT, 2015, paper P75.

  9. Ziyatdinov, M.Kh., Zhukov, A.S., Zhukov, I.A., and Promakhov, V.V., RF Patent 2603793, 2015.

  10. Bondarchuk, S.S., Matveev, A.E., Promakhov, V.V., Vorozhtsov, A.B., Zhukov, A.S., Zhukov, I.A., and Ziatdinov, M.H., Synthesis and properties of energetics metal borides for hybrid solid-propellant rocket engines, Proc. Scientific-Practical Conference “Research and Development – 2016” (Moscow, 2016), Anisimov, K.V., Dub, A.V., Kolpakov, S.K., Lisitsa, A.V., Petrov, A.N., Polukarov, V.P., Popel, O.S., and Vinokurov, V.A., Eds., Cham: Springer, 2018, pp. 511–519. https://doi.org/10.1007/978-3-319-62870-7_54

  11. Ağaoğulları, D., Gökçe, H., Duman, İ., and Öveçoğlu, M.L., Aluminum diboride synthesis from elemental powders by mechanical alloying and annealing, J. Eur. Ceram. Soc., 2012, vol. 32, no. 7, pp. 1457–1462. https://doi.org/10.1016/j.jeurceramsoc.2011.03.037

    Article  CAS  Google Scholar 

  12. Kislyi, P.S., Neronov, V.A., Prikhna, T.A., and Bevza, Yu.V., Boridy alyuminiya (Aluminum Borides), Kiev: Naukova Dumka, 1990.

  13. Duschanek, H. and Rogl, P., The Al-B (aluminum-boron) system, J. Phase Equilib., 1994, vol. 15, pp. 543–552. https://doi.org/10.1007/BF02649415

    Article  CAS  Google Scholar 

  14. Okamoto, H., Al–B (aluminum-boron), J. Phase Equilib. Diffus., 2006, vol. 27, pp. 195–196. https://doi.org/10.1007/s11669-006-0057-4

    Article  CAS  Google Scholar 

  15. Big Chemical Encyclopedia: Chemical Substances, Components, Reactions, Process Design. https://chempedia.info. Accessed April 11, 2018.

  16. Dolgoborodov, A.Yu., Mechanically activated oxidizer-fuel energetic composites, Combust., Explos., Shock Waves, 2015, vol. 51, no. 1, pp. 86–99. https://doi.org/10.1134/S0010508215010098

    Article  Google Scholar 

  17. Dreizin, E.L. and Schoenitz, M., US Patent 7524355, 2003.

  18. Yagodnikov, D.A., Voronetskii, A.V., Devyatukha, D.Yu., et al., Specific features of the use of nano- and ultradispersed powders of aluminum diboride in pyrotechnical compositions, Vestn. MGTU N. E. Baumana, Ser. Mashinostr., 2009, no. 2, pp. 115–121.

  19. Yagodnikov, D.A., Voronetskii, A.V., and Sarab’ev, V.I., Ignition and combustion of pyrotechnic compositions based on micro- and nanoparticles of aluminum diboride in air flow in a two-zone combustion chamber, Combust., Explos., Shock Waves, 2016, vol. 52, no. 3, pp. 300–306. https://doi.org/10.1134/S0010508216030072

    Article  Google Scholar 

  20. Guseinov, Sh.L., Fedorov, S.G., and Storozhenko, P.A., Nanopowders of boron and aluminum borides as the potential components of energetic condensed systems, Nanomater. Nanotekhnol., 2011, no. 4, pp. 36–44.

  21. Guseinov, Sh.L., Fedorov, S.G., and Tuzov, A.Yu., RF Patent 2485081, 2012.

  22. Storozhenko, P.A., Guseinov, Sh.L., and Malashin, S.I., Nanodispersed powders: Synthesis methods and practical applications, Nanotechnol. Russ., 2009, vol. 4, pp. 262–274. https://doi.org/10.1134/S1995078009050024

    Article  Google Scholar 

  23. Guseinov, Sh.L., Fedorov, S.G., Tuzov, A.Yu., Malashin, S.I., Drachev, A.I., Kiselev, M.R., Pevchenko, B.V., and Voron’ko, O.V., Nanodispersive aluminum boride prepared by a plasma recondensation of aluminum and boron micron powders, Nanotechnol. Russ., 2015, vol. 10, pp. 420–427. https://doi.org/10.1134/S199507801503009X

    Article  CAS  Google Scholar 

  24. Kleine, J., Koch, J., and Lobel, J., WO Patent 2010/049382 A1, 2008.

  25. Takayuki, A., Kenji, A., Yoshiro, I., Kenji, K., and Takayuki, W., Jpn. Patent 2003261323, 2002.

  26. Imkhovik, N.A., Selivanov, V.V., Svidinsky, A.V., Smirnov, A.S., and Yashin, V.B., Current trends in the development of new high-density materials for different advanced munitions, Boepripasy Vysokoenerg. Kondens. Sist., 2017, no. 2, pp. 108–115.

  27. Imkhovik, N.A., Svidinsky, A.V., Smirnov, A.S., and Yashin, V.B., Foreign investigations of new high-density reactive materials for different advanced munitions, Gorenie Vzryv, 2017, vol. 10, no. 1, pp. 93–101.

    Google Scholar 

  28. Vorozhtsov, A.B., Zhukov, A.S., Ziatdinov, M.Kh., Bondarchuk, S.S., Lerner, M.I., and Rodkevich, N.G., Novel micro- and nanofuels: Production, characterization, and applications for high-energy materials, Chemical Rocket Propulsion: A Comprehensive Survey of Energetic Materials, Springer Aerospace Technology Series, DeLuca, L.T., Shimada, T., Sinditskii, V.P., and Calabro, M., Eds., Cham: Springer, 2017, pp. 235–251. https://doi.org/10.1007/978-3-319-27748-6_9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Fedorov.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guseinov, S.L., Fedorov, S.G. & Storozhenko, P.A. Methods of the Synthesis of Aluminum Borides from Elemental Substances for Use as High-Energy Materials: A Review. Theor Found Chem Eng 54, 686–692 (2020). https://doi.org/10.1134/S0040579520040089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520040089

Keywords:

Navigation