Skip to main content
Log in

Method of Automated Synthesis of Optimal Heat Exchange Network (HEN) Based on the Principle of Fixation of Variables

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A new approach to the synthesis of a multistage heat exchange network is proposed based on the principle of fixation of variables. This principle enables one to reduce a discrete-continuous programming problem to a sequence of linear and nonlinear programming problems. For their formalization, a new variant of the superstructure of a heat exchange network is put forward which includes all the possible flow patterns of material and heat streams. A computational experiment has proven that this problem is multiextremal. The vertical decomposition of the superstructure decreases the number of local minima of an economic criterion and reduces the computational difficulty of the synthesis problem, which is useful for modeling large-scale engineering systems. The performance of the proposed algorithm is demonstrated by a number of model examples in comparison with that of the efficient SYNHEAT software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. Tovazhnyanskii, L.L., Kapustenko, P.A., Ul’ev, L.M., Boldyrev, S.A., Arsen’eva, O.P., and Tarnovskii, M.V., Thermal process integration in the AVDU A12/2 crude distillation unit during winter operation, Theor. Found. Chem. Eng., 2009, vol. 43, no. 6, pp. 906– 917. https://doi.org/10.1134/S0040579509060086

    Article  CAS  Google Scholar 

  2. Meshalkin, V.P., Tovazhnyanskii, L.L., Ul’ev, L.M., Mel’nikovskaya, L.A., and Khodchenko, S.M., Energy- and resource-efficient redesign of a petroleum refining plant based on pinch analysis with allowance for external heat loss, Teor. Osn. Khim. Tekhnol., 2012, vol. 46, no. 5, pp. 491–500.

    Google Scholar 

  3. Klemeš, J.J. and Kravanja, Z., Forty years of heat integration: Pinch analysis (PA) and mathematical programming (MP), Curr. Opin. Chem. Eng., 2013, vol. 2, no. 4, pp. 461–474. https://doi.org/10.1016/j.coche.2013.10.003

    Article  Google Scholar 

  4. Morar, M. and Agachi, P.S., Review: Important contributions in development and improvement of the heat integration techniques, Comput. Chem. Eng., 2010, vol. 34, no. 8, pp. 1171–1179. https://doi.org/10.1016/j.compchemeng.2010.02.038

    Article  CAS  Google Scholar 

  5. Furman, K.C. and Sahinidis, N.V., A critical review and annotated bibliography for heat exchanger network synthesis in the 20th century, Ind. Eng. Chem. Res., 2002, vol. 41, no. 10, pp. 2335–2370. https://doi.org/10.1021/ie010389e

    Article  CAS  Google Scholar 

  6. Quirante, N., Caballero, J.A., and Grossmann, I.E., A novel disjunctive model for the simultaneous optimization and heat integration, Comput. Chem. Eng., 2017, vol. 96, pp. 149–168. https://doi.org/10.1016/j.compchemeng.2016.10.002

    Article  CAS  Google Scholar 

  7. Ahmetović, E., Ibrić, N., Kravanja, Z., and Grossmann, I.E., Water and energy integration: A comprehensive literature review of non-isothermal water network synthesis, Comput. Chem. Eng., 2015, vol. 82, pp. 144–171. https://doi.org/10.1016/j.compchemeng.2015.06.011

    Article  CAS  Google Scholar 

  8. Ahmetović, E. and Kravanja, Z., Simultaneous synthesis of process water and heat exchanger networks, Energy, 2013, vol. 57, p. 236.

    Article  Google Scholar 

  9. Bagajewicz, M., Rodera, H., and Savelski, M., Energy efficient water utilization systems in process plants, Comput. Chem. Eng., 2002, vol. 26, no. 1, p. 59.

    Article  CAS  Google Scholar 

  10. Wang, Y., Chang, C., and Feng, X., A systematic framework for multi-plants heat integration combining direct and indirect heat integration methods, Energy, 2015, vol. 90, p. 56.

    Article  Google Scholar 

  11. Laukkanen, T., Tveit, T.-M., and Fogelholm, C.-J., Simultaneous heat exchanger network synthesis for direct and indirect heat transfer inside and between processes, Chem. Eng. Res. Des., 2012, vol. 90, p. 1129.

    Article  CAS  Google Scholar 

  12. Song, R., Chang, C., Tang, Q., Wang, Y., Feng, X., and El-Halwagi, M.M., The implementation of inter-plant heat integration among multiple plants. Part II: The mathematical model, Energy, 2017, vol. 135, p. 382.

    Article  Google Scholar 

  13. Boldyryev, S.A., Garev, A.O., Klemeš, J.J., Tovazhnyansky, L.L., Kapustenko, P.O., Perevertaylenko, O.Yu., and Arsenyeva, O.P., Heat integration of ammonia refrigeration cycle into buildings heating systems in buildings, Theor. Found. Chem. Eng., 2013, vol. 47, no. 1, p. 39.

    Article  CAS  Google Scholar 

  14. Zhao, X.G., O’Neill, B.K., Roach, J.R., and Wood, R.M., Heat integration for batch processes: Part 2: Heat exchanger network design, Chem. Eng. Res. Des., 1998, vol. 76, no. 6, p. 700.

    Article  CAS  Google Scholar 

  15. Klemeš, J.J. and Varbanov, P.S., Heat integration including heat exchangers, combined heat and power, heat pumps, separation processes and process control, Appl. Therm. Eng., 2012, vol. 43, p. 1.

    Article  Google Scholar 

  16. Holiastos, K. and Manousiouthakis, V., Minimum hot/cold/electric utility cost for heat exchange networks, Comput. Chem. Eng., 2002, vol. 26, p. 3.

    Article  CAS  Google Scholar 

  17. Linnhoff, B., Pinch analysis—A state-of-the-art overview: Techno-economic analysis, Chem. Eng. Res. Des., 1993, vol. 71, no. 5, pp. 503–522.

    CAS  Google Scholar 

  18. Ul’ev, L.M. and Vasil’ev, M.A., Heat and power integration of processes for the refinement of coking products, Theor. Found. Chem. Eng., 2015, vol. 49, no. 5, pp. 676–687. https://doi.org/10.1134/S0040579515050292

    Article  CAS  Google Scholar 

  19. Tsirlin, A.M., Akhremenkov, A.A., and Grigorevskii, I.N., Minimal irreversibility and optimal distributions of heat transfer surface area and heat load in heat transfer systems, Theor. Found. Chem. Eng., 2008, vol. 42, no. 2, pp. 203–210. https://doi.org/10.1134/S0040579508020139

    Article  CAS  Google Scholar 

  20. Tsirlin, A.M. and Akhremenkov, A.A., Optimal heat transfer during the change of phase state of a refrigerating medium, Theor. Found. Chem. Eng., 2018, vol. 52, no. 5, pp. 812–818. https://doi.org/10.1134/S0040579518050408

    Article  CAS  Google Scholar 

  21. Yee, T.F. and Grossmann, I.E., Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis, Comput. Chem. Eng., 1990, vol. 14, no. 10, pp. 1165–1184. https://doi.org/10.1016/0098-1354(90)85010-8

    Article  CAS  Google Scholar 

  22. Ponce-Ortega, J.M., Jiménez-Gutiérrez, A., and Grossmann, I.E., Optimal synthesis of heat exchanger networks involving isothermal process streams, Comput. Chem. Eng., 2008, vol. 32, no. 8, pp. 1918–1942. https://doi.org/10.1016/j.compchemeng.2007.10.007

    Article  CAS  Google Scholar 

  23. Bogataj, M. and Kravanja, Z., An alternative strategy for global optimization of heat exchanger networks, Appl. Therm. Eng., 2012, vol. 43, p. 75.

    Article  Google Scholar 

  24. Pettersson, F., Synthesis of large-scale heat exchanger networks using a sequential match reduction approach, Comput. Chem. Eng., 2005, vol. 29, p. 993.

    Article  CAS  Google Scholar 

  25. Zhang, C., Cui, G., and Chen, S., An efficient method based on the uniformity principle for synthesis of large-scale heat exchanger networks, Appl. Therm. Eng., 2016, vol. 107, p. 565.

    Article  Google Scholar 

  26. Bergamini, M.L., Scenna, N.J., and Aguirre, P.A., Global optimal structures of heat exchanger networks by piecewise relaxation, Ind. Eng. Chem. Res., 2007, vol. 46, p. 1752.

    Article  CAS  Google Scholar 

  27. Faria, D.C., Kim, S.Y., and Bagajewicz, M.J., Global optimization of the stage-wise superstructure model for heat exchanger networks, Ind. Eng. Chem. Res., 2015, vol. 54, no. 5, p. 1595.

    Article  CAS  Google Scholar 

  28. Björk, K.-M. and Westerlund, T., Global optimization of heat exchanger network synthesis problems with and without the isothermal mixing assumption, Comput. Chem. Eng., 2002, vol. 26, p. 1581.

    Article  Google Scholar 

  29. Agarwal, A. and Gupta, S.K., Multiobjective optimal design of heat exchanger networks using new adaptations of the elitist nondominated sorting genetic algorithm, NSGA-II, Ind. Eng. Chem. Res., 2008, vol. 47, no. 10, pp. 3489–3501. https://doi.org/10.1021/ie070805g

    Article  CAS  Google Scholar 

  30. Cerda, J., Westerberg, A.W., Mason, D., and Linnhoff, B., Minimum utility usage in heat exchanger network synthesis: A transportation problem, Chem. Eng. Sci., 1983, vol. 38, no. 3, p. 373.

    Article  CAS  Google Scholar 

  31. Cerda, J. and Westerberg, A.W., Synthesizing heat exchanger networks having restricted stream/stream matches using transportation problem formulations, Chem. Eng. Sci., 1983, vol. 38, no. 10, p. 1723.

    Article  CAS  Google Scholar 

  32. Papoulias, S.A. and Grossmann, I.E., A structural optimization approach in process synthesis—II: Heat recovery networks, Comput. Chem. Eng., 1983, vol. 7, no. 6, pp. 707–721. https://doi.org/10.1016/0098-1354(83)85023-6

    Article  CAS  Google Scholar 

  33. Chen, Y., Grossmann, I.E., and Miller, D.C., Computational strategies for large-scale MILP transshipment models for heat exchanger network synthesis, Comput. Chem. Eng., 2015, vol. 82, pp. 68–83. https://doi.org/10.1016/j.compchemeng.2015.05.015

    Article  CAS  Google Scholar 

  34. Nemet, A., Isafiade, A., Klemeš, J., and Kravanja, Z., Two-step MILP/MINLP approach for the synthesis of large-scale HENs, Chem. Eng. Sci., 2018, vol. 197, p. 432.

    Article  Google Scholar 

  35. Ostrovskii, G.M., Ziyatdinov, N.N., and Emel’yanov, I.I., Synthesis of optimal systems of simple distillation columns with heat recovery, Dokl. Chem., 2015, vol. 461, no. 1, pp. 89–92. https://doi.org/10.1134/S0012500815030052

    Article  CAS  Google Scholar 

  36. Ziyatdinov, N.N., Ostrovskii, G.M., and Emel’yanov, I.I., Designing a heat-exchange system upon the reconstruction and synthesis of optimal systems of distillation columns, Theor. Found. Chem. Eng., 2016, vol. 50, no. 2, pp. 178–187. https://doi.org/10.1134/S0040579516020147

    Article  CAS  Google Scholar 

  37. Ziyatdinov, N.N., Emel’yanov, I.I., and Tuen, L.Q., Method for the synthesis of optimum multistage heat exchange network, Theor. Found. Chem. Eng., 2018, vol. 52, no. 6, pp. 943–955. https://doi.org/10.1134/S0040579518060167

    Article  CAS  Google Scholar 

  38. Yee, T.F., Grossmann, I.E., and Kravanja, Z., Simultaneous optimization models for heat integration—III. Process and heat exchanger network optimization, Comput. Chem. Eng., 1990, vol. 14, no. 11, pp. 1185–1200. https://doi.org/10.1016/0098-1354(90)80001-R

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Ziyatdinov.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziyatdinov, N.N., Emel’yanov, I.I., Lapteva, T.V. et al. Method of Automated Synthesis of Optimal Heat Exchange Network (HEN) Based on the Principle of Fixation of Variables. Theor Found Chem Eng 54, 258–276 (2020). https://doi.org/10.1134/S0040579520020189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520020189

Keywords:

Navigation