Skip to main content
Log in

Mathematical Modeling of UF6 Desublimation in a Tank with Horizontal Ribbing

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Unsteady-state UF6 desublimation into a vertical immersed tank 6.0 × 10–2 m3 in volume with horizontal internal ribs has been numerically modeled using an in-house developed software-implemented two-dimensional mathematical model. The dependences of the characteristics of UF6 desublimation on the pressure and temperature of gaseous UF6 in the collector; the coolant temperature; and the number, arrangement, and geometry of the ribs in the tank are described. It is shown that increasing the number of ribs, changing the heat- and mass-transfer conditions, and increasing the diameter of the central openings in the horizontal ribs significantly increase the average productivity of the tank and decrease its filling time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Kamchatova, E.Yu., Innovative potential of atomic power engineering, Vestn. Univ. (Gos. Univ. Upr.), 2017, no. 11, p. 27.

  2. Gergert, A.P., Molostova, I.I., and Ryabov, D.K., Development of the aluminum alloy 1960 for gas centrifuges, Tsvetn. Met., 2013, no. 9, p. 33.

  3. Aleksandrov, O.E., Two approaches to the optimization of a gas centrifuge, Perspekt. Mater., 2010, no. 8, p. 29.

  4. Belyntsev, A.M., Sergeev, G.S., Gromov, O.B., Bychkov, A.A., Ivanov, A.V., Kamordin, S.I., Mikheev, P.I., Nikonov, V.I., Petrov, I.V., Seredenko, V.A., Starovoitov, S.P., Fomin, S.A., Frolov, V.G., and Kholin, V.F., Intensification of evaporation of uranium hexafluoride, Theor. Found. Chem. Eng., 2013, vol. 47, no. 4, p. 499.

    Article  CAS  Google Scholar 

  5. Turaev, N.S. and Zherin, I.I., Chemistry and Technology of Uranium, Moscow: Ore & Metals, 2006.

  6. Orlov, A.A., Tsimbalyuk, A.F., and Malyugin, R.V., Desublimation for purification and transporting UF6: Process description and modeling, Sep. Purif. Rev., 2017, vol. 46, no. 1, p. 81.

    Article  CAS  Google Scholar 

  7. Gubanov, S.M., Krainov, A.Yu., and Mazur, R.L., Theoretical and experimental modeling of the cooling of uranium hexafluoride vapor desublimation tanks, Theor. Found. Chem. Eng., 2016, vol. 50, no. 5, p. 766.

    Article  CAS  Google Scholar 

  8. Gubanov, S.M., Krainov, A.Yu., Mazur, R.L., and Durnovtsev, M.I., Theoretical modeling of cooling of containers for the desublimation of hydrogen fluoride vapors, Theor. Found. Chem. Eng., 2017, vol. 51, no. 3, p. 352.

    Article  CAS  Google Scholar 

  9. Orlov, A.A., Malyugin, R.V., and Kotel’nikova, A.A., Effect of heat and mass transfer conditions on the dynamics of the filling of tanks with smooth inside walls with desublimated UF6, Izotopy: tekhnologii, materialy i primenenie: Materialy V Mezhdunarodnoi konferentsii molodykh uchenykh, aspirantov i studentov (Isotopes: Technologies, Materials, and Applications: Proc. V International Conference of Young Scientists, Postgraduates, and Students), Tomsk: Grafika, 2018, p. 30.

  10. Orlov, A.A., Tsimbalyuk, A.F., and Malyugin, R.V., Desublimation of UF6 in vertically finned tanks, Theor. Found. Chem. Eng., 2020, vol. 54, no. 1, pp. 52–61.

    Article  Google Scholar 

  11. Martins, M.M., Vaz, M., Jr., and Zdanski, P.S.B., A note on a derivative scheme for the finite volume method applied to incompressible viscous fluid, Continuum Mech. Thermodyn., 2018, vol. 30, p. 943.

    Article  CAS  Google Scholar 

  12. Darwish, M., Geahchan, W., and Moukalled, F., Fully implicit method for coupling multiblock meshes with nonmatching interface grids, Numer. Heat Transfer, Part B, 2017, vol. 71, no. 2, p. 109.

    Article  Google Scholar 

  13. Fang, W.-Z., Gou, J.-J., Chen, L., and Tao, W.-Q., A multi-block lattice Boltzmann method for the thermal contact resistance at the interface of two solids, Appl. Therm. Eng., 2018, vol. 138, p. 122.

    Article  Google Scholar 

  14. Khorrami, Z. and Banihashem, M.A., Improving multi-block sigma-coordinate for 3D simulation of sediment transport and steep slope bed evolution, Appl. Math. Modell., 2019, vol. 67, p. 378.

    Article  Google Scholar 

  15. Wang, S., Nissen, A., and Kreiss, G., Convergence of finite difference methods for the wave equation in two space dimensions, Math. Comput., 2018, vol. 314, no. 87, p. 2737.

    Article  Google Scholar 

  16. Hassanzadeh, R. and Tokgoz, N., Thermal-hydraulic characteristics of nanofluid flow in corrugated ducts, J. Eng. Thermophys., 2017, vol. 26, no. 4, p. 498.

    Article  CAS  Google Scholar 

  17. Orlov, A.A., Tsimbalyuk, A.F., Malyugin, R.V., Leontieva, D.A., and Kotelnikova, A.A., Effect of tank geometry on its average performance, AIP Conf. Proc., 2018, vol. 1938, article no. 020009.

    Article  Google Scholar 

  18. Orlov, A.A., Tsimbalyuk, A.F., Malyugin, R.V., and Glazunov, A.A., Dynamics of UF6 desublimation with the influence of tank geometry for various coolant temperature, MATEC Web Conf., 2016, vol. 72, article no. 01079.

  19. Orlov, A.A., Tsimbalyuk, A.F., and Malyugin, R.V., A mathematical model for the desublimation of uranium hexafluoride, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, 2016, no. 2, p. 75.

  20. Orlov, A.A., Tsimbalyuk, A.F., Malyugin, R.V., and Kotel’nikova, A.A., Natural convection of gaseous UF6 in a vertical cylindrical tank, Izv. Vyssh. Uchebn. Zaved., Fiz., 2018, vol. 61, no. 12/2, p. 79.

  21. Godunov, S.K., Zabrodin, A.V., Ivanov, M.Ya., and Kraiko, A.N., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki (Numerical Solution of the Multidimensional Problems of Fluid Dynamics), Moscow: Nauka, 1976.

  22. Schlichting, H., Boundary Layer Theory, New York: McGraw-Hill, 1968.

    Google Scholar 

  23. Mazhukin, A.V. and Mazhukin, V.I., Dynamic adaptation for parabolic equations, Comput. Math. Math. Phys., 2007, vol. 47, no. 11, pp. 1833–1855. https://doi.org/10.1134/S0965542507110097

    Article  Google Scholar 

  24. Llewellyn, D.R., Some physical properties of uranium hexafluoride, J. Chem. Soc., 1953, p. 28.

  25. Katz, J.J. and Rabinowiych, E., The Chemistry of Uranium. Part I. The Element, Its Binary and Related Compounds, New York: McGraw-Hill, 1961.

    Google Scholar 

  26. Orlov, A.A., Tsimbalyuk, A.F., and Malyugin, R.V., Mathematical modeling of process of obtaining the solid uranium hexafluoride, Key Eng. Mater., 2016, vol. 683, p. 533.

    Article  Google Scholar 

  27. Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Series in Computational Methods in Mechanics and Thermal Sciences, New York: Hemisphere, 1980.

  28. Hu, M.-H., Wu, J.-S., and Chen, Y.-S., Development of a parallelized 2D/2D-axisymmetric Navier–Stokes equation solver for all-speed gas flows, Comput. Fluids, 2011, vol. 45, no. 1, pp. 241–248. https://doi.org/10.1016/j.compfluid.2010.12.017

    Article  Google Scholar 

  29. Corcione, M., Cianfrini, M., and Quintino, A., Enhanced natural convection heat transfer of nanofluids in enclosures with two adjacent walls heated and the two opposite walls cooled, Int. J. Heat Mass Transfer, 2015, vol. 88, p. 902.

    Article  CAS  Google Scholar 

  30. Mamourian, M., Milani, ShirvanK., Ellahi, R., and Rahimi, A.B., Optimization of mixed convection heat transfer with entropy generation in a wavy surface square lid-driven cavity by means of Taguchi approach, Int. J. Heat Mass Transfer, 2016, vol. 102, p. 544.

    Article  CAS  Google Scholar 

  31. Xiao, H., Wang, J., Liu, Z., and Liu, W., A consistent SIMPLE algorithm with extra explicit prediction – SIMPLEC, Int. J. Heat Mass Transfer, 2018, vol. 120, p. 1255.

    Article  Google Scholar 

  32. Grigoras, C.G., Muntianu, G., and Gavrila, L., Mathematical modelling of CaCl2 aqueous solutions thermophysical properties, Sci. Study Res.: Chem. Chem. Eng., Biotechnol., Food Ind. (Univ. Bacau), 2016, vol. 17, no. 4, p. 417.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Malyugin.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, A.A., Tsimbalyuk, A.F. & Malyugin, R.V. Mathematical Modeling of UF6 Desublimation in a Tank with Horizontal Ribbing. Theor Found Chem Eng 54, 342–348 (2020). https://doi.org/10.1134/S004057952002013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057952002013X

Keywords:

Navigation