Hydrodynamics of Gas–Liquid Slug Flows in a Long In-Plane Spiral Shaped Milli-Reactor

Abstract

An experimental investigation of gas–liquid Taylor flows in a millimetric in-plane spiral shaped reactor with various tube curvature ratios (52 < λ < 166) is reported. Thanks to the compactness of the reactor and the use of an ad hoc imaging system and processing, the axial evolution of bubble lengths and velocities could be recorded and extracted along the whole reactor length (~3 m). The experimental results showed a significant linear increase of bubble length and velocity with axial position. Very long, stable Taylor bubbles (LB/dit up to 40) and liquid slugs were generated, in particular due to the poor wettability of the surface and the important role it played in bubble formation. At identical inertial force (i.e., identical Reynolds number), a higher centrifugal force (i.e., lower tube curvature ratio) likely led to shorter Taylor bubble lengths while only slightly affecting the liquid slug lengths. The axial pressure drop could be estimated from the axial increase in bubble volume, and compared with the measured pressure drop and that predicted by the correlations from literatures. By considering both the friction and capillary pressure drops, it was observed that the predicted two-phase pressure drop was slightly dependent on the centrifugal force and that the capillary pressure drop, determined from the unit cell number, capillary number and static contact angle, was dominant.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. 1

    Paul, M., Strassl, F., Hoffmann, A., Hoffmann, M., Schlüter, M., and Herres-Pawlis, S., Reaction systems for bubbly flows, Eur. J. Inorg. Chem., 2018, vol. 2018, nos. 20–21, p. 2101.

    Article  CAS  Google Scholar 

  2. 2

    Yue, J., Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis, Catal. Today, 2017, vol. 308, p. 3.

    Article  CAS  Google Scholar 

  3. 3

    Radjagobalou, R., Blanco, J.-F., Dechy-Cabaret, O., Oelgemöller, M., and Loubière, K., Photooxygenation in an advanced led-driven flow reactor module: Experimental investigations and modelling, Chem. Eng. Process., 2018, vol. 130, p. 214.

    Article  CAS  Google Scholar 

  4. 4

    Anxionnaz, Z., Cabassud, M., Gourdon, C., and Tochon, P., Heat exchanger/reactors (HEX reactors): Concepts, technologies: State-of-the-art, Chem. Eng. Process., 2008, vol. 47, no. 12, p. 2029.

    Article  CAS  Google Scholar 

  5. 5

    Ganapathy, H., Al-Hajri, E., and Ohadi, M., Mass transfer characteristics of gas–liquid absorption during Taylor flow in mini/microchannel reactors, Chem. Eng. Sci., 2013, vol. 101, no. 14, p. 69.

    Article  CAS  Google Scholar 

  6. 6

    Martínez, F.L.D., Julcour, C., Billet, A.-M., and Larachi, F., Modelling and simulations of a monolith reactor for three-phase hydrogenation reactions—Rules and recommendations for mass transfer analysis, Catal. Today, 2016, vol. 273, p. 121.

    Article  CAS  Google Scholar 

  7. 7

    Kherbeche, A., Mei, M., Thoraval, M.-J., Hébrard, G., and Dietrich, N., Hydrodynamics and gas–liquid mass transfer around a confined sliding bubble, Chem. Eng. J. (in press).

  8. 8

    Yang, L., Loubière, K., Dietrich, N., Men, C.L., Gourdon, C., and Hébrard, G., Local investigations on the gas–liquid mass transfer around Taylor bubbles flowing in a meandering millimetric square channel, Chem. Eng. Sci., 2017, vol. 165, p. 192.

    Article  CAS  Google Scholar 

  9. 9

    Kurt, S.K., Warnebold, F., Nigam, K.D.P., and Kockmann, N., gas–liquid reaction and mass transfer in microstructured coiled flow inverter, Chem. Eng. Sci., 2017, vol. 169, p. 164.

    Article  CAS  Google Scholar 

  10. 10

    Aillet, T., Loubiere, K., Dechy-Cabaret, O., and Prat, L., Accurate measurement of the photon flux received inside two continuous flow microphotoreactors by actinometry, Int. J. Chem. React. Eng., 2014, vol. 12, no. 1, p. 257.

    Article  CAS  Google Scholar 

  11. 11

    Hipolito, A., Rolland, M., Boyer, C., and De Bellefon, C., Single pellet string reactor for intensification of catalyst testing in gas/liquid/solid configuration, Oil Gas Sci. Technol.–Revue d’IFP Energies nouvelles, 2010, vol. 65, no. 5, p. 689.

  12. 12

    Vashisth, S., Kumar, V., and Nigam, K.D., A review on the potential applications of curved geometries in process industry, Ind. Eng. Chem. Res., 2008, vol. 47, no. 10, p. 3291.

    Article  CAS  Google Scholar 

  13. 13

    Aillet, T., Loubière, K., Dechy-Cabaret, O., and Prat, L., Microreactors as a tool for acquiring kinetic data on photochemical reactions, Chem. Eng. Technol., 2016, vol. 39, no. 1, p. 115.

    Article  CAS  Google Scholar 

  14. 14

    Loubière, K., Oelgemöller, M., Aillet, T., Dechy-Cabaret, O., and Prat, L., Continuous-flow photochemistry: A need for chemical engineering, Chem. Eng. Process., 2016, vol. 104, p. 120.

    Article  CAS  Google Scholar 

  15. 15

    Fellouah, H., Castelain, C., El Moctar, A.O., and Peerhossaini, H., A criterion for detection of the onset of Dean instability in Newtonian fluids, Eur. J. Mech., B, 2006, vol. 25, no. 4, p. 505.

  16. 16

    Jimenez, M., Miller, B., and Bridle, H.L., Efficient separation of small microparticles at high flowrates using spiral channels: Application to waterborne pathogens, Chem. Eng. Sci., 2017, vol. 157, p. 247.

    Article  CAS  Google Scholar 

  17. 17

    Fries, D.M. and von Rohr, P.R., Liquid mixing in gas–liquid two-phase flow by meandering microchannels, Chem. Eng. Sci., 2009, vol. 64, no. 6, p. 1326.

    Article  CAS  Google Scholar 

  18. 18

    Abiev, R., Svetlov, S., and Haase, S., Hydrodynamics and mass transfer of gas–liquid and liquid-liquid Taylor flow in micro channels: A review, Chem. Eng. Technol., 2017, vol. 40, no. 11, p. 1985.

    Article  CAS  Google Scholar 

  19. 19

    Haase, S., Murzin, D.Y., and Salmi, T., Review on hydrodynamics and mass transfer in minichannel wall reactors with gas–liquid Taylor flow, Chem. Eng. Res. Des., 2016, vol. 113, p. 304.

    Article  CAS  Google Scholar 

  20. 20

    Abadie, T., Aubin, J., Legendre, D., and Xuereb, C., Hydrodynamics of gas–liquid Taylor flow in rectangular microchannels, Microfluid. Nanofluid., 2012, vol. 12, nos. 1–4, p. 355.

    Article  Google Scholar 

  21. 21

    Abiev, R.S., Method for calculating the void fraction and relative length of bubbles under slug flow conditions in capillaries, Theor. Found. Chem. Eng., 2010, vol. 44, no. 1, p. 86.

    Article  CAS  Google Scholar 

  22. 22

    Zaloha, P., Kristal, J., Jiricny, V., Völkel, N., Xuereb, C., and Aubin, J., Characteristics of liquid slugs in gas–liquid Taylor flow in microchannels, Chem. Eng. Sci., 2012, vol. 68, no. 1, p. 640.

    Article  CAS  Google Scholar 

  23. 23

    Kumar, V., Vashisth, S., Hoarau, Y., and Nigam, K., Slug flow in curved microreactors: Hydrodynamic study, Chem. Eng. Sci., 2007, vol. 62, no. 24, p. 7494.

    Article  CAS  Google Scholar 

  24. 24

    Muradoglu, M. and Stone, H.A., Motion of large bubbles in curved channels, J. Fluid Mech., 2007, vol. 570, p. 455.

    Article  Google Scholar 

  25. 25

    Kawahara, A., Sadatomi, M., Matsuo, H., and Shimokawa, S., Investigation of characteristics of gas–liquid two-phase flows in a rectangular microchannel with return bends, Proc. ASME-JSME-KSME 2011 Joint Fluids Engineering Conference, 2011, p. 2461.

  26. 26

    Ide, H., Kimura, R., Hashiguchi, H., and Kawaji, M., Effect of channel length on the gas–liquid two-phase flow phenomena in a microchannel, Heat Transfer Eng., 2012, vol. 33, no. 3, p. 225.

    Article  CAS  Google Scholar 

  27. 27

    Molla, S., Eskin, D., and Mostowfi, F., Pressure drop of slug flow in microchannels with increasing void fraction: Experiment and modeling, Lab Chip, 2011, vol. 11, no. 11, p. 1968.

    Article  CAS  Google Scholar 

  28. 28

    Lee, C.Y. and Lee, S.Y., Pressure drop of two-phase dry-plug flow in round mini-channels: Effect of moving contact line, Exp. Therm. Fluid Sci., 2010, vol. 34, no. 1, p. 1.

    Article  Google Scholar 

  29. 29

    Choi, C., Yu, D.I., and Kim, M., Surface wettability effect on flow pattern and pressure drop in adiabatic two-phase flows in rectangular microchannels with T-junction mixer, Exp. Therm. Fluid Sci., 2011, vol. 35, no. 6, p. 1086.

    Article  CAS  Google Scholar 

  30. 30

    Abiev, R.S., Effect of contact-angle hysteresis on the pressure drop under slug flow conditions in minichannels and microchannels, Theor. Found. Chem. Eng., 2015, vol. 49, no. 4, p. 414.

    Article  CAS  Google Scholar 

  31. 31

    Qu, J., Wang, Q., Li, C., Han, X., and He, Z., A simple model for Taylor flow induced contact angle hysteresis and capillary pressure inside mini/micro-scale capillary tubes, Int. J. Heat Mass Transfer, 2014, vol. 78, p. 1004.

    Article  Google Scholar 

  32. 32

    Ide, H., Kimura, R., Inoue, K., and Kawaji, M., Effect of wetting on adiabatic gas–liquid two-phase flow in a microchannel, Proc. ASME 6th International Conference on Nanochannels, Microchannels, and Minichannels, 2008, p. 337.

  33. 33

    Abdelwahed, M.A.B., Wielhorski, Y., Bizet, L., and Bréard, J., Characterisation of bubbles formed in a cylindrical T-shaped junction device, Chem. Eng. Sci., 2012, vol. 76, p. 206.

    Article  CAS  Google Scholar 

  34. 34

    Cubaud, T., Ulmanella, U., and How, C.-M., Two-phase flow in microchannels with surface modifications, Fluid Dyn. Res., 2006, vol. 38, no. 11, p. 772.

    Article  Google Scholar 

  35. 35

    Roudet, M., Loubiere, K., Gourdon, C., and Cabassud, M., Hydrodynamic and mass transfer in inertial gas–liquid flow regimes through straight and meandering millimetric square channels, Chem. Eng. Sci., 2011, vol. 66, no. 13, p. 2974.

    Article  CAS  Google Scholar 

  36. 36

    Krieger, W., Hörbelt, M., Schuster, S., Hennekes, J., and Kockmann, N., Kinetic study of leuco-indigo carmine oxidation and investigation of Taylor and Dean flow superposition in a coiled flow inverter, Chem. Eng. Technol., 2019, vol. 42, no. 10, p. 1.

    Google Scholar 

  37. 37

    Kováts, P., Pohl, D., Thévenin, D., and Zähringer, K., Optical determination of oxygen mass transfer in a helically-coiled pipe compared to a straight horizontal tube, Chem. Eng. Sci., 2018, vol. 190, p. 273.

    Article  CAS  Google Scholar 

  38. 38

    Hosoda, S., Abe, S., Hosokawa, S., and Tomiyama, A., Mass transfer from a bubble in a vertical pipe, Int. J. Heat Mass Transfer, 2014, vol. 69, p. 215.

    Article  CAS  Google Scholar 

  39. 39

    Dietrich, N., Loubière, K., Jimenez, M., Hébrard, G., and Gourdon, C., A new direct technique for visualizing and measuring gas–liquid mass transfer around bubbles moving in a straight millimetric square channel, Chem. Eng. Sci., 2013, vol. 100, p. 172.

    Article  CAS  Google Scholar 

  40. 40

    Dietrich, N., Wongwailikhit, K., Mei, M., Xu, F., Felis, F., Kherbeche, A., Hébrard, G., and Loubière, K., Using the “red bottle” experiment for the visualization and the fast characterization of gas–liquid mass transfer, J. Chem. Educ., 2019, vol. 96, no. 5, p. 979.

    Article  CAS  Google Scholar 

  41. 41

    Barajas, A. and Panton, R., The effects of contact angle on two-phase flow in capillary tubes, Int. J. Multiphase Flow, 1993, vol. 19, no. 2, p. 337.

    Article  CAS  Google Scholar 

  42. 42

    Otsu, N., A threshold selection method from gray-level histograms, IEEE Trans. Syst., Man, Cybern., 1979, vol. 9, no. 1, p. 62.

    Article  Google Scholar 

  43. 43

    Bretherton, F., The motion of long bubbles in tubes, J. Fluid Mech., 1961, vol. 10, no. 2, p. 166.

    Article  Google Scholar 

  44. 44

    Van Steijn, V., Kreutzer, M.T., and Kleijn, C.R., μ-PIV study of the formation of segmented flow in microfluidic T-junctions, Chem. Eng. Sci., 2007, vol. 62, no. 24, p. 7505.

    Article  CAS  Google Scholar 

  45. 45

    Garstecki, P., Fuerstman, M.J., Stone, H.A., and Whitesides, G.M., Formation of droplets and bubbles in a microfluidic T-junction—Scaling and mechanism of break-up, Lab Chip, 2006, vol. 6, no. 3, p. 437.

    Article  CAS  Google Scholar 

  46. 46

    Laborie, S., Cabassud, C., Durand-Bourlier, L., and Laine, J., Characterisation of gas–liquid two-phase flow inside capillaries, Chem. Eng. Sci., 1999, vol. 54, no. 23, p. 5723.

    Article  CAS  Google Scholar 

  47. 47

    Tsoligkas, A.N., Simmons, M.J.H., and Wood, J., Influence of orientation upon the hydrodynamics of gas–liquid flow for square channels in monolith supports, Chem. Eng. Sci., 2007, vol. 62, no. 16, p. 4365.

    Article  CAS  Google Scholar 

  48. 48

    Kreutzer, M.T., Kapteijn, F., Moulijn, J.A., Kleijn, C.R., and Heiszwolf, J.J., Inertial and interfacial effects on pressure drop of Taylor flow in capillaries, AIChE J., 2005, vol. 51, no. 9, p. 2428.

    Article  CAS  Google Scholar 

  49. 49

    Vashisth, S. and Nigam, K., Experimental investigation of pressure drop during two-phase flow in a coiled flow inverter, Ind. Eng. Chem. Res., 2007, vol. 46, no. 14, p. 5043.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Prof. Alain Line and Alexandre Boucher, who kindly provided valuable support and discussions for pressure drop and liquid film calculation.

Funding

The first author would like to acknowledge the financial assistance provided by the China Scholarship Council. We also acknowledge the support for this work from the CNRS research federation FERMaT (FR 3059).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karine Loubière.

Additional information

Special issue: “Two-phase flows in microchannels: hydrodynamics, heat and mass transfer, chemical reactions”. Edited by R.Sh. Abiev

APPENDIX

APPENDIX

(1) Calculation of the bubble and liquid slug lengths

The bubble and liquid slug lengths are calculated based on the hypothesis that the nose and tail of the curved bubble and liquid slug are flat and that the liquid film thickness is negligible. Under these assumptions, as shown in Fig. A.1, the bubble area, AB, can be deduced from the difference between the outer sector OM1M2, Aouter, and the inner sector OM3M4, Ainner, such as

$${{A}_{{{\text{inner}},{\text{B}}}}} = \frac{{\theta }}{2}{{\left( {R - \frac{{{{d}_{{{\text{it}}}}}}}{2}} \right)}^{2}},$$
(A.1)
$${{A}_{{{\text{outer}},{\text{B}}}}} = \frac{{\theta }}{2}{{\left( {R + \frac{{{{d}_{{{\text{it}}}}}}}{2}} \right)}^{2}}$$
(A.2)
$${{A}_{{\text{B}}}} = {{A}_{{{\text{outer}},{\text{B}}}}} - {{A}_{{{\text{inner}},{\text{B}}}}} = R{{d}_{{{\text{it}}}}}{\theta }$$
(A.3)

The bubble length, LB, is defined according to

$${{L}_{B}} = R{\theta }$$
(A.4)

By combining Eqs. (A.3) and (A.4), one obtains

$${{L}_{{\text{B}}}} = \frac{{{{A}_{B}}}}{{{{d}_{{{\text{it}}}}}}}$$
(A.5)

Similarly, the liquid slug length can also be deduced from the liquid slug area, AS, and dit as

$${{L}_{S}} = {\theta }R = \frac{{{{A}_{{{\text{outer}},{\text{S}}}}} - {{A}_{{{\text{inner}},{\text{S}}}}}}}{{{{d}_{{{\text{it}}}}}}} = \frac{{{{A}_{{\text{S}}}}}}{{{{d}_{{{\text{it}}}}}}}$$
(A.6)

(2) Variation of the constant F2 related to the bubble velocity (Eq. (6))

figure13

Fig. A.1. The schematic diagram of the bubble length calculation.

figure14

Fig. A.2. Constant F2 versus gas–liquid flow ratio for configuration ET: (1) jL = 1.80 cm s–1; (2) jL = 3.61 cm s–1; (3) jL = 7.22 cm s–1; configuration MT: (4) jL = 1.80 cm s–1; (5) jL = 3.61 cm s–1; (6) jL = 7.22 cm s–1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mei Mei, Felis, F., Hébrard, G. et al. Hydrodynamics of Gas–Liquid Slug Flows in a Long In-Plane Spiral Shaped Milli-Reactor. Theor Found Chem Eng 54, 25–47 (2020). https://doi.org/10.1134/S0040579520010169

Download citation

Keywords:

  • Taylor gas–liquid flow
  • millimetric channel
  • centrifugal force
  • bubble expansion
  • pressure drop