Skip to main content
Log in

Thermodynamic Simulation of Polycrystalline Silicon Chemical Vapor Deposition in Si–Cl–H System

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract—

Based on thermodynamic data for related pure substances, the relations of (nCl/nH)Eq and (nCl/nH)o have been plotted in the Si–Cl–H system. The results show that the difference of (nSi/nCl)o and (nSi/nCl)Eq is the driving force for polycrystalline silicon chemical vapor deposition (CVD). SiHCl3 is preferred for polycrystalline silicon deposition to SiCl4. SiH2Cl2 would be even better, but it is not stable as a gas and hence it is less frequently used. Then, thermodynamic simulation of polycrystalline silicon CVD in the Si–H–Cl system has been investigated. The pressure has a negative effect on polycrystalline silicon yield. The optimum temperature is 1400 K, at which the kinetic rate of rate-determining step for the main reaction is large enough. The excess hydrogen is necessary for polycrystalline silicon CVD in the Si–Cl–H system. However, the silicon deposition rate increases then decreases with increasing H2 molar fraction. The optimum H2 molar fraction should be determined by considering thermodynamics and transport phenomena simultaneously. Finally, the optimum conditions have been obtained as 1400 K, about 0.1 MPa, and H2 to SiHCl3 ratio of 15, which are close to the limited reported values in the open literature. Under the optimum conditions, the silicon yield ratio is 34.82% against 20% reported in the open literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Bye, G. and Cecaroli, B., Solar grade silicon: Technology status and industrial trends, Sol. Energy Mater. Sol. Cells, 2014, vol. 130, p. 634.

    Article  CAS  Google Scholar 

  2. Delannoy, Y., Purification of silicon for photovoltaic applications, J. Cryst. Growth, 2012, vol. 360, p. 61.

    Article  CAS  Google Scholar 

  3. Ni, H., Lu, S., and Chen, C., Modeling and simulation of silicon epitaxial growth in Siemens CVD reactor, J. Cryst. Growth, 2014, vol. 404, p. 89.

    Article  CAS  Google Scholar 

  4. Meyer, S., Wahl, S., Molchanov, A., Neckermann, K., Moller, C., Lauer, K., and Hagendorf, C., Influence of the feedstock purity on the solar cell efficiency, Sol. Energy Mater. Sol. Cells, 2014, vol. 130, p. 668.

    Article  CAS  Google Scholar 

  5. Pizzini, S., Towards solar grade silicon: Challenges and benefits for low cost photovoltaics, Sol. Energy Mater. Sol. Cells, 2010, vol. 94, no. 9, p. 1528.

    Article  CAS  Google Scholar 

  6. Timilsina, G., Kurdgelashvili, L., and Narbel, P., Solar energy: Markets, economics and policies, Renewable Sustainable Energy Rev., 2012, vol. 16, no. 1, p. 449.

    Article  Google Scholar 

  7. Moon, H., Kim, H., Song, J., Lee, H., Kwon, H., Jung, Y., and Cho, H., Effect of extended single/multi-jet nozzles in a fluidized bed reactor on growth of granular polysilicon, Chem. Eng. J., 2014, vol. 248, p. 242.

    Article  CAS  Google Scholar 

  8. Ramos, A., Canizo, C., Valdehita, J., Zamorano, J., and Luque, A., Radiation heat saving in polysilicon production: Validation of results through a CVD laboratory prototype, J. Cryst. Growth, 2013, vol. 374, p. 5.

    Article  CAS  Google Scholar 

  9. Filtvedt, W., Holt, A., Ramachandran, P., and Melaaen, M., Chemical vapor deposition of silicon from silane: Review of growth mechanisms and modeling/scaleup of fluidized bed reactors, Sol. Energy Mater. Sol. Cells, 2012, vol. 107, p. 188.

    Article  CAS  Google Scholar 

  10. Safarian, J., Tranell, G., and Tangstad, M., Processes for upgrading metallurgical grade silicon to solar grade silicon, Energy Procedia, 2012, vol. 20, p. 88.

    Article  CAS  Google Scholar 

  11. Gu, X., Yu, X., and Yang, D., Low-cost solar grade silicon purification process with Al-Si system using a powder metallurgy technique, Sep. Purif. Technol., 2011, vol. 77, p. 33.

    Article  CAS  Google Scholar 

  12. Filtvedt, W., Mongstad, T., Holt, A., Melaaen, M., and Klette, H., Production of silicon from SiH4 in a fluidized bed, operation and results, Int. J. Chem. React. Eng., 2013, vol. 11, no. 1, p. 57.

    Article  Google Scholar 

  13. Hou, Y., Xie, G., Tao, D., Yu, X., Li R., and Yao, Y., Thermodynamic study on zinc reduction process for production of polycrystalline silicon, J. Chem. Eng. Jpn., 2011, vol. 44, no. 6, p. 382.

    Article  CAS  Google Scholar 

  14. Hou, Y., Nie, Z., Xie, G., Li, R., Yu, X., and Ramachandran, P., Thermodynamic behavior of SiCl2 in silicon deposition by gas phase zinc reduction of silicon tetrachloride, Chin. J. Chem. Eng., 2015, vol. 23, p. 552.

    Article  CAS  Google Scholar 

  15. Cavallotti, C. and Masi, M., Kinetics of SiHCl3 chemical vapor deposition and fluid dynamic simulations, J. Nanosci. Nanotechnol., 2011, vol. 11, p. 8054.

    Article  CAS  Google Scholar 

  16. Ramos, A., Rodguez, A., Canizo, C., Valdehita, J., Zamorano, J., and Luque, A., Heat losses in a CVD reactor for polysilicon production: Comprehensive model and experimental validation, J. Cryst. Growth, 2014, vol. 402, p. 138.

    Article  CAS  Google Scholar 

  17. Hou, Y., Xie, G., Tao, D., Yu, X., Li, R., and Song, D., Thermodynamic study on SiCl4 hydrogenation system in Siemens process, J. Chem. Eng. Jpn., 2011, vol. 44, no. 4, p. 214.

    Article  CAS  Google Scholar 

  18. Wang, C., Wang, T., and Wang, Z., Recycling of SiCl4 in the manufacture of granular polysilicon in a fluidized bed reactor, Chem. Eng. J., 2013, vol. 220, p. 81.

    Article  CAS  Google Scholar 

  19. Sirtl, E., Hunt, L., and Sawyer, D., High temperature reactions in the silicon-hydrogen-chlorine system, J. Electrochem. Soc., 1974, vol. 121, p. 919.

    Article  CAS  Google Scholar 

  20. Diana, M., Marino, L., Mastrant, L., and Rossi, R., Thermodynamic analysis of the reduction of silicon chlorides with hydrogen in the 300-4500 K temperature range, Rev. Int. Hautes Temp. Refract., 1981, vol. 18, p. 203.

    CAS  Google Scholar 

  21. Miao, J., Chen, S., and Qiu, K., Thermodynamic study on production of the multicrystalline silicon by Siemens process, Chin. J. Inorg. Chem., 2007, vol. 23, p. 795.

    CAS  Google Scholar 

  22. Miao, J., Qiu, K., and Chen, S., Thermodynamic behavior of SiHCl3 and SiCl4 in Siemens system, Chin. J. Nonferrous Met., 2008, vol. 18, p. 1937.

    CAS  Google Scholar 

  23. Chernyavsky, L., Titov, V., Sysoev, S., and Ryzhenkov, S., Thermodynamic simulation of silicon deposition form the gas phase of Si-Cl-H system, Inorg. Mater., 2009, vol. 45, no. 5, p. 463.

    Article  CAS  Google Scholar 

  24. Kee, R.J., Rupley, F.M., and Miller, J.A., The Thermodynamic Data for Silanes and Chlorosilanes, Sandia National Laboratories Report SAND 87-8215B, Albuquerque, N.M.: Sandia National Laboratories, 1990.

  25. Shuji, T. and Masaki, T., WO Patent 2011111335, 2011.

  26. Su, M.-D. and Schlegel, H.B., An ab initio MO study of the thermal decomposition of chlorinated monosilanes, SiH4–nCln (n = 0–4), J. Phys. Chem., 1993, vol. 97, p. 9981.

    Article  CAS  Google Scholar 

  27. Hou, Y., The Theoretical Analysis and Modeling on Polycrystalline Silicon Production by Modified Siemens Process, Kunming, 2013.

    Google Scholar 

  28. He, E., Xie, G., Hou, Y., and Yu, X., Thermodynamic analysis of SiHCl3 hydrogen reduction process, Chem. Eng., 2011, vol. 11, p. 46.

    Google Scholar 

  29. Narusawa, U., Si deposition from chlorosilanes: II. Numerical analysis of thermofluid effects on deposition, J. Electrochem. Soc., 1994, vol. 141, p. 2078.

    Article  CAS  Google Scholar 

  30. Lee, J., Lee, W., Park, Y., Kim, H., Kang, N., Yoon, K., Choi, W., and Yang, O., Catalytic conversion of silicon tetrachloride to trichlorosilane for poly-Si process, Sol. Energy Mater. Sol. Cells, 2012, vol. 105, p. 142.

    Article  CAS  Google Scholar 

  31. Takaaki, S. and Kyoji, O., US Patent 7790130, 2010.

Download references

Funding

This research is supported by the National Natural Science Foundation of China (21566015) and Applied Basic Research Projects of Yunnan (2015FB126).

NOTATION

K

equilibrium constant

K

kinetic constant, S–1

N

molar quantity, mol

P

pressure, Pa

R

gas constant, J mol–1 K–1

T

temperature, K

v

stoichiometric coefficient

x

polycrystalline silicon yield, %

y

molar fraction, mol %

SUBSCRIPTS AND SUPERSCRIPTS

0

initial value

1

SiHCl3

2

H2

3

HCl

4

Si

5

SiCl4

6

SiCl3

7

SiCl2

8

SiCl

9

SiH2Cl2

10

SiH3

11

SiH4

Cl

chlorine

eq, Eq

equilibrium value

H

hydrogen

i

numbers of components

j

numbers of reactions

Si

silicon

t

total value

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqing Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yangmin Zhou, Hou, Y., Nie, Z. et al. Thermodynamic Simulation of Polycrystalline Silicon Chemical Vapor Deposition in Si–Cl–H System. Theor Found Chem Eng 53, 1048–1056 (2019). https://doi.org/10.1134/S0040579519060162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579519060162

Keywords:

Navigation