Skip to main content
Log in

Analysis of Extraction Chromatographic Separation of a Binary Mixture in a Series of Multistage Columns

  • UNIT OPERATIONS AND EQUIPMENT OF CHEMICAL ENGINEERING
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Two processes of multistage extraction chromatographic separation of components (with and without recycling) are theoretically studied under various conditions of loading of a mixture to be separated to the apparatus. A mathematical description of the separation processes is presented. It is shown that the separation of components in the process with recycling requires an order of magnitude fewer equilibrium stages than separation in the process without recycling. Moreover, the productivity of the process with recycling, which is determined by the duration of loading to the apparatus, is an order of magnitude higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kostanyan, A.E., Erastov, A.A., Belova, V.V., and Khol’kin, A.I., New extraction–chromatography processes for the separation of organic and inorganic substances, Khim. Tekhnol., 2015, vol. 16, no. 4, pp. 239–245.

    Google Scholar 

  2. Belova, V.V., Combined extraction–chromatography processes for separation and purification of substances, Khim. Tekhnol., 2016, vol. 17, no. 12, pp. 554–559.

    Google Scholar 

  3. Maryutina, T.A., Spivakov, B.Ya., Shpigun, L.K., Pavlenko, I.V., and Zolotov, Yu.A., Preconcentration and separation of ortho- and pyrophosphate ions by countercurrent partition chromatography, Zh. Anal. Khim., 1990, vol. 45, no. 4, pp. 665–670.

    CAS  Google Scholar 

  4. Fedotov, P.S., Maryutina, T.A., Grebneva, O.N., Kuz’min, N.M., and Spivakov, B.Ya., Use of countercurrent partition chromatography for the preconcentration and separation of inorganic compounds: Group extraction of Zr, Hf, Nb, and Ta for their subsequent determination by inductively coupled plasma atomic emission spectrometry, J. Anal. Chem., 1997, vol. 52, no. 11, pp. 1034– 1038.

    CAS  Google Scholar 

  5. Chmutova, M.K., Maryutina, T.A., Spivakov, B.Ya., and Myasoedov, B.F., Separation of americium(III) and europium(III) in systems with neutral bidentate organophosphorus extractants by countercurrent partition chromatography, Radiokhimiya, 1992, no. 6, pp. 56–63.

  6. Maryutina, T.A. and Ignatova, S.N., Countercurrent chromatography for the preconcentration and separation of inorganic compounds: Influence of physicochemical properties of two-phase liquid systems on the retention of the stationary phase, J. Anal. Chem., 1998, vol. 53, no. 8, pp. 740–745.

    CAS  Google Scholar 

  7. Friesen, J.B., McAlpine, J.B., Chen, S.-N., and Pauli, G.F., Countercurrent separation of natural products: An update, J. Nat. Prod., 2015, vol. 78, pp. 1765–1796. https://doi.org/10.1021/np501065h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ignatova, S. and Sutherland, I., The 8th International Conference on Counter-Current Chromatography held at Brunel University, London, UK, July 23–25, 2014, J. Chromatogr. A, 2015, vol. 1425, pp. 1–7. https://doi.org/10.1016/j.chroma.2015.10.096

    Article  CAS  PubMed  Google Scholar 

  9. Marchal, L., Legrand, J., and Foucault, A., Centrifugal partition chromatography: A survey of its history, and our recent advances in the field, Chem. Rec., 2003, vol. 3, no. 3, pp. 133–143. https://doi.org/10.1002/tcr.10057

    Article  CAS  PubMed  Google Scholar 

  10. Ito, Y., Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography, J. Chromatogr. A, 2005, vol. 1065, pp. 145–168. https://doi.org/10.1016/j.chroma.2004.12.044

    Article  CAS  PubMed  Google Scholar 

  11. Morley, R. and Minceva, M., Trapping multiple dual mode centrifugal partition chromatography for the separation of intermediately-eluting components: Throughput maximization strategy, J. Chromatogr. A, 2017, vol. 1501, pp. 26–38. https://doi.org/10.1016/j.chroma.2017.04.033

    Article  CAS  PubMed  Google Scholar 

  12. Kotland, A., Chollet, S., Autret, J.-M., Diard, C., Marchal, L., and Renault, J.-H., Modeling pH-zone refining countercurrent chromatography: A dynamic approach, J. Chromatogr. A, 2015, vol. 1391, pp. 80–87. https://doi.org/10.1016/j.chroma.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Y., Zhang, L., Zhou, H., Guo, X., and Wu, S., K-targeted strategy for isolation of phenolic alkaloids of Nelumbo nucifera Gaertn by counter-current chromatography using lysine as a pH regulator, J. Chromatogr. A, 2017, vol. 1490, pp. 115–125. https://doi.org/10.1016/j.chroma.2017.02.022

    Article  CAS  PubMed  Google Scholar 

  14. Peng, A., Hewitson, P., Ye, H., Zu, L., Garrard, I., Sutherland, I., Chen, L., and Ignatova, S., Sample injection strategy to increase throughput in counter-current chromatography: Case study of Honokiol purification, J. Chromatogr. A, 2016, vol. 1476, pp. 19–24. https://doi.org/10.1016/j.chroma.2016.10.040

    Article  CAS  PubMed  Google Scholar 

  15. Boonloed, A., Weber, G.L., Ramzy, K.M., Dias, V.R., and Remcho, V.T., Centrifugal partition chromatography: A preparative tool for isolation and purification of xylindein from Chlorociboria aeruginosa, J. Chromatogr. A, 2016, vol. 1478, pp. 19–25. https://doi.org/10.1016/j.chroma.2016.11.026

    Article  CAS  PubMed  Google Scholar 

  16. Kostanyan, A.E., Voshkin, A.A., Khol’kin, A.I., and Belova, V.V., RF Patent 2403949, 2010.

  17. Kostanyan, A.E., Voshkin, A.A., and Kodin, N.V., Controlled-cycle pulsed liquid–liquid chromatography. A modified version of Craig’s counter-current distribution, J. Chromatogr. A, 2011, vol. 1218, no. 36, pp. 6135–6143. https://doi.org/10.1016/j.chroma.2010.12.103

    Article  CAS  PubMed  Google Scholar 

  18. Porter, R.S. and Johnson, J.F., Circular gas chromatograph, Nature, 1959, vol. 183, pp. 391–392. https://doi.org/10.1038/183391a0

    Article  CAS  Google Scholar 

  19. Xie, J., Deng, J., Tan, F., and Su, J., Separation and purification of echinacoside from Penstemon barbatus (Can.) Roth by recycling high-speed counter-current chromatography, J. Chromatogr. B, 2010, vol. 878, pp. 2665–2668. https://doi.org/10.1016/j.jchromb.2010.07.023

    Article  CAS  Google Scholar 

  20. Han, Q.B., Song, J.Z., Qiao, C.F., Wong, L., and Xu, H.X., Preparative separation of gambogic acid and its C-2 epimer using recycling high-speed counter-current chromatography, J. Chromatogr. A, 2006, vol. 1127, pp. 298–301. https://doi.org/10.1016/j.chroma.2006.07.044

    Article  CAS  PubMed  Google Scholar 

  21. Meng, J., Yang, Z., Liang, J., Zhou, H., and Wu, S., Multi-channel recycling counter-current chromatography for natural product isolation: Tanshinones as examples, J. Chromatogr. A, 2014, vol. 1327, pp. 27–38. https://doi.org/10.1016/j.chroma.2013.12.069

    Article  CAS  PubMed  Google Scholar 

  22. Kostanyan, A.E. and Erastov, A.A., Theoretical study of closed-loop recycling liquid-liquid chromatography and experimental verification of the theory, J. Chromatogr. A, 2016, vol. 1462, pp. 55–62. https://doi.org/10.1016/j.chroma.2016.07.079

    Article  CAS  PubMed  Google Scholar 

  23. Kostanyan, A.E., Simple equations to simulate closed-loop recycling liquid–liquid chromatography: Ideal and non-ideal recycling models, J. Chromatogr. A, 2015, vol. 1423, pp. 71–78. https://doi.org/10.1016/j.chroma.2015.10.052

    Article  CAS  PubMed  Google Scholar 

  24. Kostanyan, A.E., Modeling of preparative closed-loop recycling liquid-liquid chromatography with specified duration of sample loading, J. Chromatogr. A, 2016, vol. 1471, pp. 94–101. https://doi.org/10.1016/j.chroma.2016.10.012

    Article  CAS  PubMed  Google Scholar 

  25. Kostanyan, A.E., Theoretical study of separation and concentration of solutes by closed-loop recycling liquid-liquid chromatography with multiple sample injection, J. Chromatogr. A, 2017, vol. 1506, pp. 82–92. https://doi.org/10.1016/j.chroma.2017.05.042

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-33-00081 mol_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Kostanyan.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostanyan, A.E., Martynova, M.M. Analysis of Extraction Chromatographic Separation of a Binary Mixture in a Series of Multistage Columns. Theor Found Chem Eng 53, 939–944 (2019). https://doi.org/10.1134/S0040579519050099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579519050099

Keywords:

Navigation