Mass Transfer, Kinetic, Equilibrium, and Thermodynamic Study on Removal of Divalent Lead from Aqueous Solutions Using Agrowaste Biomaterials, Musa acuminata, Casuarina equisetifolia L., and Sorghum bicolor

  • Ramya Prasanthi Mokkapati
  • Venkata Nadh RatnakaramEmail author
  • Jayasravanthi Mokkapati


Three distinct agricultural waste materials, viz., casuarina fruit powder (CFP), sorghum stem powder (SSP), and banana stem powder (BSP) were used as low-cost adsorbents for the removal of toxic lead(II) from aqueous solutions. Acid treated adsorbents were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). The effects of parameters like adsorbent dose, pH, temperature, initial metal ion concentration, and time of adsorption on the removal of Pb(II) were analyzed for each adsorbent individually and the efficiency order was BSP > SSP > CFP. Based on the extent of compatibility to Freundlich/Langmuir/Dubinin–Radushkevich/Temkin adsorption isotherms and different models (pseudo-first and second order, Boyd, Weber’s, and Elovich), chemisorption primarily involved in the case of BSP and SSP, whereas simultaneous occurrence of chemisorption and physisorption was proposed in the case of CFP which was correlating with the thermodynamic study results conducted at different temperatures. Based on the observations, it was proposed that three kinetic stages involve in the adsorption process, viz., diffusion of sorbate to sorbent, intra particle diffusion, and then establishment of equilibrium. These adsorbents have a promising role towards the removal of Pb(II) from industrial wastewater to contribute environmental protection.


banana bunch-stem powder casuarinas fruit powder sorghum stem powder removal lead adsorption 



The authors are highly thankful to Acharya Nagarjuna University for providing the support for conducting the research work. The authors also wish to thank SAIF, IIT, Madras for providing SEM-EDAX instrumentation facility.


  1. 1.
    Saeed, A., Iqbal, M., and Akhtar, M.W., Removal and recovery of lead (II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk), J. Hazard. Mater., 2005, vol. 117, no. 1, pp. 65–73. CrossRefGoogle Scholar
  2. 2.
    Saka, C., Şahin, Ö., and Küçük, M.M., Applications on agricultural and forest waste adsorbents for the removal of lead (II) from contaminated waters, Int. J. Environ. Sci. Technol., 2012, vol. 9, no. 2, pp. 379–394. CrossRefGoogle Scholar
  3. 3.
    Khan, A., Badshah, S., and Airoldi, C., Environmentally benign modified biodegradable chitosan for cation removal, Polym. Bull., 2015, vol. 72, no. 2, pp. 353–370. CrossRefGoogle Scholar
  4. 4.
    Ho, Y.S., Effect of pH on lead removal from water using tree fern as the sorbent, Bioresour. Technol., 2005, vol. 96, no. 11, pp. 1292–1296. CrossRefGoogle Scholar
  5. 5.
    Dietrich, K.N., Succop, P.A., Bornschein, R.L., Krafft, K.M., Berger, O., Hammond, P.B., and Buncher, C.R., Lead exposure and neurobehavioral development in later infancy, Environ. Health Perspect., 1990, vol. 89, pp. 13–19. CrossRefGoogle Scholar
  6. 6.
    Goldstein, G.W., Lead poisoning and brain cell function, Environ. Health Perspect., 1990, vol. 89, pp. 91–94. CrossRefGoogle Scholar
  7. 7.
    Lalhruaitluanga, H., Jayaram, K., Prasad, M.N.V., and Kumar, K.K., Lead (II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo)—a comparative study, J. Hazard. Mater., 2010, vol. 175, no. 1, pp. 311–318. CrossRefGoogle Scholar
  8. 8.
    Rashid, M., and Khan, F., Removal of Pb (II) ions from aqueous solutions using hybrid organic–inorganic composite material: Zr (IV) iodosulphosalicylate, J. Water Process Eng., 2014, vol. 3, pp. 53–61. CrossRefGoogle Scholar
  9. 9.
    Elham, A., Hossein, T., and Mahnoosh, H., Removal of Zn (II) and Pb (II) ions using rice husk in food industrial wastewater, J. Appl. Sci. Environ. Manage., 2010, vol. 14, no. 4, p. 159–162. Google Scholar
  10. 10.
    Febrianto, J., Kosasih, A.N., Sunarso, J., Ju, Y.H., Indraswati, N., and Ismadji, S., Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies, J. Hazard. Mater., 2009, vol. 162, no. 2, pp. 616–645. CrossRefGoogle Scholar
  11. 11.
    Li, X.M., Zheng, W., Wang, D.B., Yang, Q., Cao, J.B., Yue, X., Shen, T.T., and Zeng, G. M., Removal of Pb (II) from aqueous solutions by adsorption onto modified areca waste: Kinetic and thermodynamic studies, Desalination, 2010, vol. 258, no. 1, pp. 148–153. CrossRefGoogle Scholar
  12. 12.
    Tang, Y., Chen, L., Wei, X., Yao, Q., and Li, T., Removal of lead ions from aqueous solution by the dried aquatic plant, Lemna perpusilla Torr., J. Hazard. Mater., 2013, vol. 244, pp. 603–612. CrossRefGoogle Scholar
  13. 13.
    Hossain, M.A., Ngo, H.H., Guo, W.S., and Setiadi, T., Adsorption and desorption of copper (II) ions onto garden grass, Bioresour. Technol., 2012, vol. 121, pp. 386–395. CrossRefGoogle Scholar
  14. 14.
    Ramya, P.M., Venkata, N.R., Jayasravanthi, M., and Dulla, B.J., Chemical oxygen demand reduction from coffee processing waste water – A comparative study on usage of biosorbents prepared from agricultural wastes, Global NEST J., 2015, vol. 17, pp. 291–300.CrossRefGoogle Scholar
  15. 15.
    Chen, J.P., and Yang, L., Chemical modification of Sargassum sp. for prevention of organic leaching and enhancement of uptake during metal biosorption, Ind. Eng. Chem. Res., 2005, vol. 44, no. 26, pp. 9931–9942. CrossRefGoogle Scholar
  16. 16.
    Li, K., Fu, S., Zhan, H., Zhan, Y., and Lucia, L., Analysis of the chemical composition and morphological structure of banana pseudo-stem, BioResources, 2010, vol. 5, no. 2, p. 576–585.Google Scholar
  17. 17.
    Firdous, R., and Gilani, A. H., Changes in chemical composition of sorghum as influenced by growth stages and cultivar, Asian-Australas. J. Anim. Sci., 2001, vol. 14, no. 7, pp. 935–940. CrossRefGoogle Scholar
  18. 18.
    Ogunwande, I.A., Flamini, G., Adefuye, A.E., Lawal, N.O., Moradeyo, S., and Avoseh, N.O., Chemical compositions of Casuarina equisetifolia L., Eucalyptus toreliana L. and Ficus elastica Roxb. ex Hornem cultivated in Nigeria, S. Afr. J. Bot., 2011, vol. 77, no. 3, pp. 645–649. CrossRefGoogle Scholar
  19. 19.
    Lerivrey, J., Dubois, B., Decock, P., Micera, G., Urbanska, J., and Kozłowski, H., Formation of D-glucosamine complexes with Cu (II), Ni (II) and Co (II) ions, Inorg. Chim. Acta, 1986, vol. 125, no. 4, pp. 187–190. CrossRefGoogle Scholar
  20. 20.
    Örnek, A., Özacar, M., and Şengil, İ.A., Adsorption of lead onto formaldehyde or sulphuric acid treated acorn waste: Equilibrium and kinetic studies, Biochem. Eng. J., 2007, vol. 37, no. 2, pp. 192–200. CrossRefGoogle Scholar
  21. 21.
    Okoye, A.I., Ejikeme, P.M., and Onukwuli, O.D., Lead removal from wastewater using fluted pumpkin seed shell activated carbon: Adsorption modeling and kinetics, Int. J. Environ. Sci. Tech., 2010, vol. 7, no. 4, pp. 793–800. CrossRefGoogle Scholar
  22. 22.
    Moradi, O., The removal of ions by functionalized carbon nanotube: Equilibrium, isotherms and thermodynamic studies, Chem. Biochem. Eng. Q., 2011, vol. 25, no. 2, pp. 229–240.Google Scholar
  23. 23.
    Lagergren, S., About the theory of so-called adsorption of soluble substances, K. Sven. Vetenskapsakad. Handl., 1898, vol. 24, pp. 1–39.Google Scholar
  24. 24.
    Ho, Y.S., and McKay, G., Pseudo-second order model for sorption processes, Process Biochem., 1999, vol. 34, no. 5, pp. 451–465. CrossRefGoogle Scholar
  25. 25.
    Gupta, V.K., Gupta, M., and Sharma, S., Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste, Water Res., 2001, vol. 35, no. 5, pp. 1125–1134. CrossRefGoogle Scholar
  26. 26.
    Igwe, J.C., Ogunewe, D.N., and Abia, A.A., Competitive adsorption of Zn (II), Cd (II) and Pb (II) ions from aqueous and non-aqueous solution by maize cob and husk, Afr. J. Biotechnol., 2005, vol. 4, no. 10, pp. 1113–1116.Google Scholar
  27. 27.
    Goswami, S. and Ghosh, U.C., Studies on adsorption behaviour of Cr (VI) onto synthetic hydrous stannic oxide, Water SA, 2006, vol. 31, no. 4, pp. 597–602. Google Scholar
  28. 28.
    Kumar, P.S., Vincent, C., Kirthika, K., and Kumar, K.S., Kinetics and equilibrium studies of Pb2+ in removal from aqueous solutions by use of nano-silversol-coated activated carbon, Braz. J. Chem. Eng., 2010, vol. 27, no. 2, pp. 339–346. CrossRefGoogle Scholar
  29. 29.
    Patrulea, V., Negrulescu, A., Mincea, M.M., Pitulice, L.D., Spiridon, O.B., and Ostafe, V., Optimization of the removal of copper (II) ions from aqueous solution on chitosan and cross-linked chitosan beads, BioResources, 2013, vol. 8, no. 1, pp. 1147–1165.CrossRefGoogle Scholar
  30. 30.
    Zheng, W., Li, X.M., Wang, F., Yang, Q., Deng, P., and Zeng, G.M., Adsorption removal of cadmium and copper from aqueous solution by areca — A food waste, J. Hazard. Mater., 2008, vol. 157, no. 2, pp. 490–495. CrossRefGoogle Scholar
  31. 31.
    Sharma, Y.C., Prasad, G., and Rupainwar, D.C., Removal of Ni (II) from aqueous solutions by sorption, Int. J. Environ. Stud., 1991, vol. 37, no. 3, pp. 183–191. CrossRefGoogle Scholar
  32. 32.
    Tewari, N., Vasudevan, P., and Guha, B.K., Study on biosorption of Cr (VI) by Mucor hiemalis, Biochem. Eng. J., 2005, vol. 23, no. 2, pp. 185–192. CrossRefGoogle Scholar
  33. 33.
    Dai, J., and Mumper, R.J., Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties, Molecules, 2010, vol. 15, no. 10, pp. 7313–7352. CrossRefGoogle Scholar
  34. 34.
    Ho, Y.S., and McKay, G., Sorption of dyes and copper ions onto biosorbents, Process Biochem., 2003, vol. 38, no. 7, pp. 1047–1061. CrossRefGoogle Scholar
  35. 35.
    Panday, K.K., Prasad, G., and Singh, V.N., Removal of Cr (V1) from aqueous solutions by adsorption on fly ash-wollastonite, J. Chem. Technol. Biotechnol., 1984, vol. 34, no. 7, pp. 367–374. CrossRefGoogle Scholar
  36. 36.
    Nassar, N.N., Rapid removal and recovery of Pb (II) from wastewater by magnetic nano adsorbents, J. Hazard. Mater., 2010, vol. 184, no. 1, pp. 538–546. CrossRefGoogle Scholar
  37. 37.
    Mckay, G., Blair, H.S., and Gardner, J.R., Adsorption of dyes on chitin. I. Equilibrium studies, J. Appl. Polym. Sci., 1982, vol. 27, no. 8, pp. 3043–3057. CrossRefGoogle Scholar
  38. 38.
    Singanan, M., Removal of lead (II) and cadmium (II) ions from wastewater using activated biocarbon, ScienceAsia, 2011, vol. 37, pp. 115–119. CrossRefGoogle Scholar
  39. 39.
    Dąbrowski, A., Adsorption — From theory to practice, Adv. Colloid Interface Sci., 2001, vol. 93, nos. 1–3, pp. 135–224. CrossRefGoogle Scholar
  40. 40.
    Al-Jlil, S.A. and Alsewailem, F.D., Saudi Arabian clays for lead removal in wastewater, Appl. Clay Sci., 2009, vol. 42, no. 3, pp. 671–674. CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Ramya Prasanthi Mokkapati
    • 1
  • Venkata Nadh Ratnakaram
    • 2
    Email author
  • Jayasravanthi Mokkapati
    • 3
  1. 1.Department of Chemistry, ANUCET, Acharya Nagarjuna UniversityGunturIndia
  2. 2.GITAM University – Bengaluru CampusKarnatakaIndia
  3. 3.Department of Biotechnology, Acharya Nagarjuna UniversityGunturIndia

Personalised recommendations