Skip to main content
Log in

Bottom Bed in Circulating Fluidized Bed Combustor

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A bottom bed, similar to a heterogeneous fluidized bed, in a circulating fluidized bed combustor is considered. It is shown that the formation of the bottom bed is contributed to not only by the gravitational force and the drag force, but also by an additional force produced by the circulation of bed-forming particles. A procedure for calculating the parameters of the bottom bed with consideration for this force is proposed. The conditions of the formation and existence of such a bed are formulated. The transport velocity, average porosity, residence time, and other characteristics of the bottom bed are determined under typical operating conditions of combustors. Calculations for published experiments are carried out. The results are compared with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.

Similar content being viewed by others

REFERENCES

  1. Wang, C. and Zhu, J., Developments in the understanding of gas-solid contact efficiency in the circulating fluidized bed riser reactor: A review, Chin. J. Chem. Eng., 2016, vol. 24, pp. 53–62. https://doi.org/10.1016/j.cjche.2015.07.004

    Article  CAS  Google Scholar 

  2. Arjunwadkar, A., Basu, P., and Acharya, B., A review of some operation and maintenance issues of CFBC boilers, Appl. Therm. Eng., 2016, vol. 102, pp. 672–694. https://doi.org/10.1016/j.applthermaleng.2016.04.008

    Article  CAS  Google Scholar 

  3. Tuponogov, V.G. and Baskakov, A.P., The influence of the gas distributing grid diameter on the transition velocity and hydrodynamics of the bottom bed in circulating fluidized bed installations, Therm. Eng., 2013, vol. 60, no. 11, pp. 808–812. https://doi.org/10.1134/S0040601513110116

    Article  Google Scholar 

  4. Schouten, J.C., Zijerveld, R.C., and Bleek, C.M., Scale-up of bottom-bed dynamics and axial solids-distribution in circulating fluidized beds of Geldart-B particles, Chem. Eng. Sci., 1999, vol. 54, nos. 13–14, pp. 2103–2112. https://doi.org/10.1016/S0009-2509(98)00352-2

    Article  CAS  Google Scholar 

  5. Mo, X., Wang, P., Yang, H., Junfu, L., Zhang, M., and Liu, Q., A hydrodynamic model for circulating fluidized beds with low riser and tall riser, Powder Technol., 2015, vol. 274, pp. 146–153. https://doi.org/10.1016/j.powtec.2015.01.022

    Article  CAS  Google Scholar 

  6. Cho, D., Choi, J.-H., Khurram, M.S., Jo, S.-H., Ryu, H.-J., Park, Y.C., and Yi, C.-K., Solids circulation rate and static bed height in a riser of a circulating fluidized bed, Korean J. Chem. Eng., 2015, vol. 32, no. 2, pp. 284–291. https://doi.org/10.1007/s11814-014-0209-x

    Article  CAS  Google Scholar 

  7. Mahmoudi, S., Baeyens, J., and Seville, J., The solids flow in the CFB-riser quantified by single radioactive particle tracking, Powder Technol., 2011, vol. 211, pp. 135–143. https://doi.org/10.1016/j.powtec.2011.04.011

    Article  CAS  Google Scholar 

  8. Pallarès, D. and Johnsson, F., Macroscopic modelling of fluid dynamics in large-scale circulating fluidized beds, Prog. Energy Combust. Sci., 2006, vol. 32, pp. 539–569. https://doi.org/10.1016/j.pecs.2006.02.002

    Article  CAS  Google Scholar 

  9. Schlichthaerle, P. and Werther, J., Solids mixing in the bottom zone of a circulating fluidized bed, Powder Technol., 2001, vol. 120, nos. 1–2, pp. 21–33. https://doi.org/10.1016/S0032-5910(01)00342-4

    Article  CAS  Google Scholar 

  10. Svensson, A., Johnsson, F., and Leckner, B., Bottom bed regimes in a circulating fluidized bed boiler, Int. J. Multiphase Flow, 1996, vol. 22, no. 6, pp. 1187–1204. https://doi.org/10.1016/0301-9322(96)00025-0

    Article  CAS  Google Scholar 

  11. Johnsson, F., Zijerveld, R.C., Schouten, J.C., Bleek, C.M., and Leckner, B., Characterization of fluidization regimes by time-series analysis of pressure fluctuations, Int. J. Multiphase Flow, 2000, vol. 26, pp. 663–715. https://doi.org/10.1016/S0301-9322(99)00028-2

    Article  CAS  Google Scholar 

  12. Svensson, A., Johnsson, F., and Leckner, B., Bottom bed regimes in a circulating fluidized bed boiler, Int. J. Multiphase Flow, 1996, vol. 22, no. 6, pp. 1187–1204. https://doi.org/10.1016/0301-9322(96)00025-0

    Article  CAS  Google Scholar 

  13. Svensson, A., Johnsson, F., and Leckner, B., Fluidization regimes in fluidized bed, Powder Technol., 1996, vol. 68, pp. 299–312.

    Article  Google Scholar 

  14. Gungor, A., One dimensional numerical simulation of small scale CFB combustors, Energy Convers. Manage., 2009, vol. 50, no. 3, pp. 711–722. https://doi.org/10.1016/j.enconman.2008.10.003

    Article  CAS  Google Scholar 

  15. Gungor, A. and Eskin, N., Hydrodynamic modeling of a circulating fluidized bed, Powder Technol., 2007, vol. 172, pp. 1–13. https://doi.org/10.1016/j.powtec.2006.10.035

    Article  CAS  Google Scholar 

  16. Schlichthaerle, P. and Werther, J., Axial pressure profile and solids concentration distributions in the CFB bottom zone, Proc. 6th International Conference on Circulating Fluidized Beds, Würzburg, Germany, 1999, p. 185.

  17. Markeev, A.P., Teoreticheskaya mekhanika (Theoretical Mechanics), Moscow: CheRo, 1999.

  18. Aerov, M.E. and Todes, O.M., Gidravlicheskie i teplovye osnovy raboty apparatov so statsionarnym i kipyashchim zernistym sloem (Hydraulic and Thermal Fundamentals of the Operation of Apparatuses with Fixed and Fluidized Beds), Leningrad: Khimiya, 1968.

  19. El’sgol’ts, L.E., Differentsial’nye uravneniya i variatsionnoe ischislenie (Differential Equations and Calculus of Variations), Moscow: Nauka, 1969.

  20. Todes, O.M. and Tsitovich, O.B., Apparaty s kipyashchim zernistym sloem. Gidravlicheskie i teplovye osnovy raboty (Fluidized Bed Apparatuses: Hydraulic and Thermal Fundamentals of Operation), Leningrad: Khimiya, 1981.

  21. Kovenskii, V.I., Calculation of the parameters of an ensemble of particles in a well-stirred fluidized-bed reactor, Theor. Found. Chem. Eng., 2006, vol. 40, no. 2, pp. 190–202. https://doi.org/10.1134/S0040579506020126

    Article  CAS  Google Scholar 

  22. Kovenskii, V.I., Numerical calculation of parameters of an ensemble of particles in a perfectly mixed fluidized-bed reactor, Theor. Found. Chem. Eng., 2014, vol. 48, no. 1, pp. 13–26. https://doi.org/10.1134/S0040579514010047

    Article  CAS  Google Scholar 

  23. Johnsson, F. and Svensson, A., Vertical bulk density distribution in a CFB-furnace, Proc. IEA Meeting on Mathematical Modelling, San Diego, 1993, p. 1.

  24. Svensson, A., Johnsson, F., and Leckner, B., Fluid-dynamics of the bottom bed of circulating fluidized bed boilers, Proc. 12th International Conference on Fluidized Bed Combustion, Rubow, L.N., Ed., New York: American Society of Mechanical Engineers (ASME), 1993, vol. 2, pp. 887–897.

  25. Johnsson, F. and Leckner, B., Vertical distribution of solids in a CFB-furnace, Proc. 13th International Conference on Fluidized Bed Combustion, Orlando, 1995, p. 1.

  26. van der Schaaf, J., Schouten, J.C., Johnsson, F., and van den Bleek, C.M., Bypassing of gas through bubble chains and jets in circulating fluidized beds, Proc. 6th International Conference on Circulating Fluidized Beds, Würzburg, Germany, 1999, p. 47.

  27. Johnsson, F., Sternens, J., Leckner, B., Wiesendorf, V., Hartge, E.-U., Werther, J., Montat, D., and Briand, P., Fluid dynamics of the bottom zone of CFB combustors, Proc. 6th International Conference on Circulating Fluidized Beds, Würzburg, Germany, 1999, p. 113.

  28. Bai, D. and Kato, K., Saturation carrying capacity of gas and flow regimes in CFB, J. Chem. Eng. Jpn., 1995, vol. 28, no. 2, pp. 179–185. https://doi.org/10.1252/jcej.28.179

    Article  CAS  Google Scholar 

  29. Teplitskii, Yu.S. and Kovenskii, V.I., On the circulating boiling bed energy, J. Eng. Phys. Thermophys., 2009, vol. 82, no. 4, p. 623. https://doi.org/10.1007/s10891-009-0242-5

    Article  CAS  Google Scholar 

  30. Xua, G., Hartgea, E.-U., Werther, J., and Gao, S., Saturation carrying capacity at high Archimedes number of vertical concurrent gas-particle flow, Chem. Eng. Sci., 2006, vol. 61, pp. 7115–7124. https://doi.org/10.1016/j.ces.2006.07.039

    Article  CAS  Google Scholar 

  31. Xu, G., Nomura, K., Gao, S., and Kato, K., More fundamentals of dilute suspension collapse and choking for vertical conveying systems, AIChE J., 2001, vol. 47, no. 10, pp. 2177– 2196. https://doi.org/10.1002/aic.690471006

    Article  CAS  Google Scholar 

  32. Day, J.Y., Littman, H., and Morgan, M.H. III, A new choking correlation for vertical pneumatic conveying, Chem. Eng. Sci., 1990, vol. 45, pp. 355–360. https://doi.org/10.1016/0009-2509(90)87105-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kovenskii.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovenskii, V.I. Bottom Bed in Circulating Fluidized Bed Combustor. Theor Found Chem Eng 53, 793–814 (2019). https://doi.org/10.1134/S0040579519040213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579519040213

Keywords:

Navigation