Skip to main content

Computation of the Solubility of Aromatic Hydrocarbons in Supercritical Media Based on the Entropic Method of Similarity Theory

Abstract

The results of generalizing the solubility of aromatic hydrocarbons in supercritical carbon dioxide using the entropy method of similarity theory are presented. Experimental data from different authors on the solubility of 11 substances studied in a temperature range from 300 to 350 K (728 experimental points and 50 isotherms) are subjected to generalization. It is shown that the dependency makes it possible to compute the solubility of aromatic hydrocarbons subjected to generalization in supercritical carbon dioxide to an acceptable accuracy.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Gumerov, F.M., Amirchanov, D.G., Usmanov, A.G., and Le Neindre, B., The thermal diffusivity of argon in the critical region, Int. J. Thermophys., 1991, vol. 12, no. 1, p. 67. https://doi.org/10.1007/BF00506123

    Article  CAS  Google Scholar 

  2. Le Neindre, B., Garrabos, Y., Gumerov, F., and Sabirzianov, A., Measurements of the thermal conductivity of HFC-134a in the supercritical region, J. Chem. Eng. Data, 2009, vol. 54, no. 9, p. 2678. https://doi.org/10.1021/je900210h

    Article  CAS  Google Scholar 

  3. Le Neindre, B., Lombardi, G., Desmarest, P.H., Kayser, M., Zaripov, Z.I., Gumerov, F.M., and Garrabos, Y., Measurements of the thermal conductivity of ethene in the supercritical region, Fluid Phase Equilib., 2018, vol. 459, p. 119. https://doi.org/10.1016/j.fluid.2017.11.013

    Article  CAS  Google Scholar 

  4. Hung, T.N., Gumerov, F., Gabitov, F., Usmanov, R., Hairutdinov, V., and Le Neindre, B., Improvement of the water brewing of Vietnamese green tea by pretreatment with supercritical carbon dioxide, J. Supercrit. Fluids, 2012, vol. 62, p. 73. https://doi.org/10.1016/j.supflu.2011.10.017

    Article  CAS  Google Scholar 

  5. Usmanov, R.A., Gumerov, F.M., Gabitov, F.R., Zaripov, Z.I., Shamsetdinov, F.N., and Abdulagatov, I.M., High yield biofuel production from vegetable oils with supercritical alcohols, Liquid Fuels: Types, Properties and Production, Carasillo, D.A., Ed., New York: Nova Science, 2012, ch. 3, p. 99.

    Google Scholar 

  6. Khairutdinov, V.F., Akhmetzyanov, T.R., Gumerov, F.M., Khabriev, I.Sh., and Farakhov, M.I., Supercritical fluid propane–butane extraction treatment of oil-bearing sands, Theor. Found. Chem. Eng., 2017, vol. 51, no. 3, pp. 299–306. https://doi.org/10.1134/S0040579517030083

    Article  CAS  Google Scholar 

  7. Gumerov, F.M., Sagdeev, A.A., and Amirkhanov, D.G., Solubility of Substances in Supercritical Fluid Media, Saarbrücken: Lambert Academic, 2016.

    Google Scholar 

  8. Li, H., Jia, D., Li, S., and Liu, R., Correlating and predicting the solubilities of structurally similar organic solid compounds in supercritical CO2 using the compressed gas model and the reference solubilities, Fluid Phase Equilib., 2013, vol. 350, p. 13. https://doi.org/10.1016/j.fluid.2013.04.010

    Article  CAS  Google Scholar 

  9. Nasri, L., Bensaad, S., and Bensetiti, Z., Correlation and prediction of the solubility of solid solutes in chemically diverse supercritical fluids based on the expanded liquid theory, Adv. Chem. Eng. Sci., 2013, vol. 3, no. 4, p. 255. https://doi.org/10.4236/aces.2013.34033

    Article  CAS  Google Scholar 

  10. Trabelsi, F., Abaroudi, K., and Recasens, F., Predicting the approximate solubilities of solids in dense carbon dioxide, J. Supercrit. Fluids, 1999, vol. 14, no. 2, p. 151. https://doi.org/10.1016/S0896-8446(98)00117-X

    Article  CAS  Google Scholar 

  11. da Silva, M.V. and Barbosa, D., Prediction of the solubility of aromatic components of wine in carbon dioxide, J. Supercrit. Fluids, 2004, vol. 31, no. 1, p. 9. https://doi.org/10.1016/j.supflu.2003.09.018

    Article  CAS  Google Scholar 

  12. Hartono, R., Mansoori, G.A., and Suwono, A., Prediction of solubility of biomolecules in supercritical solvents, Chem. Eng. Sci., 2001, vol. 56, p. 6949. https://doi.org/10.1016/S0009-2509(01)00327-X

    Article  CAS  Google Scholar 

  13. Manohar, B. and Sankar, K.U., Prediction of solubility of Psoralea corylifolia L. Seed extract in supercritical carbon dioxide by equation of state models, Theor. Found. Chem. Eng., 2011, vol. 45, p. 409. https://doi.org/10.1134/S0040579511040087

    Article  CAS  Google Scholar 

  14. Ajchariyapagorn, A., Douglas, P.L., Douglas, S., Pongamphai, S., and Teppaitoon, W., Prediction of solubility of solid biomolecules in supercritical solvents using group contribution methods and equations of state, Am. J. Food Technol., 2008, vol. 3, p. 275. https://doi.org/10.3923/ajft.2008.275.293

    Article  CAS  Google Scholar 

  15. Madras, G., Kulkarni, C., and Modak, J., Modeling the solubilities of fatty acids in supercritical carbon dioxide, Fluid Phase Equilib., 2003, vol. 209, p. 207. https://doi.org/10.1016/S0378-3812(03)00148-1

    Article  CAS  Google Scholar 

  16. Coimbra, P., Duarte, C.M.M., and de Sousa, H.C., Cubic equation-of-state correlation of the solubility of some anti-inflammatory drugs in supercritical carbon dioxide, Fluid Phase Equilib., 2006, vol. 239, p. 188. https://doi.org/10.1016/j.fluid.2005.11.028

    Article  CAS  Google Scholar 

  17. Del Valle, J.M. and Aguilera, J.M., An improved equation for predicting the solubility of vegetable oils in supercritical carbon dioxide, Ind. Eng. Chem. Res., 1988, vol. 27, p. 1551. https://doi.org/10.1021/ie00080a036

    Article  CAS  Google Scholar 

  18. Nasri, L., Bensetiti, Z., and Bensaad, S., Correlation of the solubility of some organic aromatic pollutants in supercritical carbon dioxide based on the UNIQUAC equation, Energy Procedia, 2012, vol. 18, p. 1261. https://doi.org/10.1016/j.egypro.2012.05.142

    Article  CAS  Google Scholar 

  19. Rathnam, V.M., Lamba, N., and Madras, G., Evaluation of new density based model to correlate the solubilities of ricinoleic acid, methyl ricinoleate and methyl 10-undecenoate in supercritical carbon dioxide, J. Supercrit. Fluids, 2017, vol. 130, p. 357. https://doi.org/10.1016/j.supflu.2017.07.017

    Article  CAS  Google Scholar 

  20. Tomberli, B., Goldman, S., and Gray, C., Predicting solubility in supercritical solvents using estimated virial coefficients and fluctuation theory, Fluid Phase Equilib., 2001, vol. 187, p. 111. https://doi.org/10.1016/S0378-3812(01)00531-3

    Article  Google Scholar 

  21. Sparks, D.L., Hernandez, R., and Estevez, L.A., Evaluation of density-based models for the solubility of solids in supercritical carbon dioxide and formulation of a new model, Chem. Eng. Sci., 2008, vol. 63, no. 17, p. 4292. https://doi.org/10.1016/j.ces.2008.05.031

    Article  CAS  Google Scholar 

  22. Zakharov, A.A., Bilalov, T.R., and Gumerov, F.M., Solubility of ammonium palmitate in supercritical carbon dioxide, Russ. J. Phys. Chem. B, 2016, vol. 10, p. 1092. https://doi.org/10.1134/S1990793116070204

    Article  CAS  Google Scholar 

  23. Jaddoa, A.A., Zakharov, A.A., Bilalov, T.R., Nakipov, R.R., Gabitov, I.R., Zaripov, Z.I., and Gumerov, F.M., Some thermodynamic processes of anthracite-carbon dioxide mixture in supercritical fluid state, Russ. J. Phys. Chem. B, 2016, vol. 10, p. 1180. https://doi.org/10.1134/S1990793116080029

    Article  CAS  Google Scholar 

  24. Bilalov, T.R., Gumerov, F.M., and Gatina, R.F., Solubility of 2,4,6-trinitrotoluene and its extraction from flammable hard caps with the use of pure and modified supercritical CO2, Sverkhkrit. Flyuidy: Teor. Prakt., 2016, vol. 11, no. 4, p. 17.

    Google Scholar 

  25. Gumerov, F.M., Le Neindre, B., Bilalov, T.R., et al., Regeneration of Spent Catalyst and Impregnation of Catalyst by Supercritical Fluid, New York: Nova Science, 2016.

  26. Bilalov, T.R., Zakharov, A.A., Jaddoa, A.A., and Gumerov, F.M., and Le Neindre, B., Treatment of different types of cotton fabrics by ammonium palmitate in a supercritical CO2 environment, J. Supercrit. Fluids, 2017, vol. 130, p. 47. https://doi.org/10.1016/j.supflu.2017.07.036

    Article  CAS  Google Scholar 

  27. Usmanov, A.G., On one additional condition of the similarity of molecular processes, in Teplofizika i teplovoe modelirovanie (Thermal Physics and Thermal Modeling), Moscow: Akad. Nauk SSSR, 1959, p. 298.

  28. Sabirzyanov, A.N. and Gumerov, F.M., Generalizing binary solubility data for low-volatile liquids in supercritical fluids, Theor. Found. Chem. Eng., 2001, vol. 35, no. 2, pp. 129–132. https://doi.org/10.1023/a:1010373321731

    Article  CAS  Google Scholar 

  29. Gupta, R.B. and Shim, J.-J., Solubility in Supercritical Carbon Dioxide, Boca Raton, Fla.: CRC, 2006.

    Book  Google Scholar 

  30. Usmanov, A.G. and Berezhnoi, A.N., The use of the similarity method in studying mass transfer processes, Zh. Fiz. Khim., 1960, vol. 34, no. 4, p. 907.

    CAS  Google Scholar 

  31. Altunin, V.V., Teplofizicheskie svoistva dvuokisi ugleroda (Thermal and Physical Properties of Carbon Dioxide), Moscow: Izd. Standartov, 1975.

  32. Yamini, Y. and Bahramifar, N., Solubility of polycyclic aromatic hydrocarbons in supercritical carbon dioxide, J. Chem. Eng. Data, 2000, vol. 41, no. 1, p. 53. https://doi.org/10.1021/je990129s

    Article  CAS  Google Scholar 

  33. Anitescu, G. and Tavlarides, L.L., Solubilities of solids in supercritical fluids–I. New quasistatic experimental method for polycyclic aromatic hydrocarbons (PAHs) + pure fluids, J. Supercrit. Fluids, 1997, vol. 10, p. 175. https://doi.org/10.1016/S0896-8446(97)00024-7

    Article  CAS  Google Scholar 

  34. Goodarznia, I. and Esmaeilzadeh, F., Solubility of an anthracene, phenanthrene, and carbazole mixture in supercritical carbon dioxide, J. Chem. Eng. Data, 2002, vol. 47, no. 2, p. 333. https://doi.org/10.1021/je010093f

    Article  CAS  Google Scholar 

  35. Lee, L.-S., Huang, J.-F., and Zhu, O.-X., Solubilities of solid benzoic acid, phenanthrene, and 2,3-dimethylhexane in supercritical carbon dioxide, J. Chem. Eng. Data, 2001, vol. 46, no. 5, p. 1156. https://doi.org/10.1021/je0100140

    Article  CAS  Google Scholar 

  36. Sane, A., Taylor, S., Sun, Y.-P., and Thies, M.C., A semicontinuous flow apparatus for measuring the solubility of opaque solids in supercritical solutions, J. Supercrit. Fluids, 2004, vol. 28, nos. 2–3, p. 277. https://doi.org/10.1016/S0896-8446(03)00046-9

    Article  CAS  Google Scholar 

  37. Pauchon, V., Cisse, Z., Chavret, M., and Jose, J., A new apparatus for the dynamic determination of solid compounds solubility in supercritical carbon dioxide: Solubility determination of triphenylmethane, J. Supercrit. Fluids, 2004, vol. 32, nos. 1–3, p. 115. https://doi.org/10.1016/j.supflu.2004.03.003

    Article  CAS  Google Scholar 

  38. Diefenbacher, A. and Türk, M., Phase equilibria of organic solid solutes and supercritical fluids with respect to the RESS process, J. Supercrit. Fluids, 2002, vol. 22, no. 3, p. 175. https://doi.org/10.1016/S0896-8446(01)00123-1

    Article  CAS  Google Scholar 

  39. Kalaga, A. and Trebble, M., Density changes in supercritical solvent + hydrocarbon solute binary mixtures, J. Chem. Eng. Data, 1999, vol. 44, no. 5, p. 1063. https://doi.org/10.1021/je990029m

    Article  CAS  Google Scholar 

  40. Sauceau, M., Fages, J., Letoumeau, J.J., and Richon, D., A novel apparatus for accurate measurements of solid solubilities in supercritical phases, Ind. Eng. Chem. Res., 2000, vol. 39, no. 12, p. 4609. https://doi.org/10.1021/ie000181d

    Article  CAS  Google Scholar 

  41. Li, Q., Zhang, Z., Zhong, C., Liu, Y., and Zhou, Q., Solubility of solid solutes in supercritical carbon dioxide with and without cosolvents, Fluid Phase Equilib., 2003, vol. 207, nos. 1–2, p. 183. https://doi.org/10.1016/S0378-3812(03)00022-0

    Article  CAS  Google Scholar 

  42. Ngo, T.T., Bush, D., Eckert, C.A., and Liotta, C.L., Spectroscopic measurement of solid solubility in supercritical fluids, AIChE J., 2001, vol. 47, no. 11, p. 2566. https://doi.org/10.1002/aic.690471119

    Article  CAS  Google Scholar 

  43. Chung, S.T. and Shing, K.S., Multiphase behavior of binary and ternary systems of heavy aromatic hydrocarbons with supercritical carbon dioxide: Part I. Experimental results, Fluid Phase Equilib., 1992, vol. 81, p. 321. https://doi.org/10.1016/0378-3812(92)85160-A

    Article  CAS  Google Scholar 

  44. McHugh, M. and Paulaitis, M.E., Solid solubilities of naphthalene and biphenyl in supercritical carbon dioxide, J. Chem. Eng. Data, 1980, vol. 25, no. 4, p. 326. https://doi.org/10.1021/je60087a018

    Article  CAS  Google Scholar 

  45. Bartle, K.D., Clifford, A.A., and Jafar, S.A., Measurement of solubility in supercritical fluids using chromatographic retention: The solubility of fluorene, phenanthrene, and pyrene in carbon dioxide, J. Chem. Eng. Data, 1990, vol. 35, no. 3, p. 355. https://doi.org/10.1021/je00061a037

    Article  CAS  Google Scholar 

  46. Johnston, K.P., Ziger, D.H., and Eckert, C.A., Solubilities of hydrocarbon solids in supercritical fluids. The augmented van der Waals treatment, Ind. Eng. Chem. Fundam., 1982, vol. 21, no. 3, p. 191. https://doi.org/10.1021/i100007a001

    Article  CAS  Google Scholar 

  47. Mukhopadhyay, M., Natural Extracts Using Supercritical Carbon Dioxide, Boca Raton, Fla.: CRC, 2000.

    Book  Google Scholar 

  48. Reid, R.C., Prausnitz, J.M., and Sherwood, T.K., The Properties of Gases and Liquids, New York: McGraw-Hill, 1977, 3rd ed.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Bilalov.

Additional information

Translated by K. Gumerov

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilalov, T.R., Gumerov, F.M. Computation of the Solubility of Aromatic Hydrocarbons in Supercritical Media Based on the Entropic Method of Similarity Theory. Theor Found Chem Eng 53, 487–500 (2019). https://doi.org/10.1134/S004057951904016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057951904016X

Keywords: