Reduction of Nonuniformity in the Thickness of a Galvanic Coating Using Disableable Anode Sections under Current Reversal Conditions

  • D. S. SolovjevEmail author
  • A. Yu. Potlov
  • Yu. V. Litovka


A method of reducing the nonuniformity of a galvanic coating on the basis of disableable anode sections in the inverse current reversal regime was proposed in a relatively simple technical implementation, thus providing the possibility to broaden the variety of articles treated for mass production. The galvanic process in the inverse current reversal regime with disableable anode sections was formalized by the formulation of an optimal control problem and the development of a mathematical model. Some results of computer-aided modeling were presented alongside with the results of verifying the developed mathematical model for adequacy with the use of experimental data to demonstrate the efficiency of the method proposed.


galvanic process coating thickness nonuniformity inverse current reversal regime multianode bath mathematical model optimal control 



  1. 1.
    Kadaner, L.I., Ravnomernost’ gal’vanicheskikh pokrytii (The Uniformity of Electroplating), Kharkov: Khar’kov. Gos. Univ., 1961.Google Scholar
  2. 2.
    Romanenko, A.V., Effect of reversing current parameters on the uniformity of zinc coatings obtained in ammonia electrolyte, Russ. J. Appl. Chem., 1998, vol. 71, no. 11, pp. 2020–2022.Google Scholar
  3. 3.
    Zemanová, M., Krivosudská, M., Chovancová, M., and Jorík, V., Pulse current electrodeposition and corrosion properties of Ni–W alloy coatings, J. Appl. Electrochem., 2011, vol. 41, p. 1077. CrossRefGoogle Scholar
  4. 4.
    Dini, J.W. and Johnson, H.R., The properties of gold deposits produced by DC, pulse and asymmetric AC plating, Gold Bull. (Geneva, Switz.), 1980, vol. 13, no. 1, pp. 31–34.
  5. 5.
    Kronsbein, J., The effect of insulating and conducting shields and partly stopped-off electrodes on current distribution in electrolytic cells, Proc. London Math. Soc., 1946, vol. 49, no. 4, pp. 260–281. CrossRefGoogle Scholar
  6. 6.
    de Maubeuge, H.L., Calculation of the optimal geometry of electrochemical cells: Application to the plating on curved electrodes, J. Electrochem. Soc., 2002, vol. 149, no. 8, pp. 413–422. CrossRefGoogle Scholar
  7. 7.
    Litovka, Yu.V. and Mikheev, V.V., Numerical calculation of the electric field in an electroplating bath with bipolar electrodes, Theor. Found. Chem. Eng., 2006, vol. 40, no. 3, pp. 305–310. CrossRefGoogle Scholar
  8. 8.
    Helle, H.P.E., Beek, G.H.M., and Ligtelijn, J.Th., Numerical determination of potential distribution and current densities in multi-electrode systems, Corrosion, 1981, vol. 37, no. 9, pp. 522–530. CrossRefGoogle Scholar
  9. 9.
    Litovka, Yu.V. and D’yakov, I.A., Method to determine the potentials of anodes in a multianode electroplating bath, Theor. Found. Chem. Eng., 1997, vol. 31, no. 2, pp. 191–194.Google Scholar
  10. 10.
    Gol'dberg, S.M., On some numerical methods for solving stiff sets of ordinary differential equations, Preprint of Inst. of Applied Mathematics, Academy of Sciences of the USSR, Moscow, 1976.Google Scholar
  11. 11.
    Lions, J.-L., Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Paris: Dunod, Gauthier-Villars, 1968.Google Scholar
  12. 12.
    Boyarinov, A.I. and Kafarov, V.V., Metody optimizatsii v khimicheskoi tekhnologii (Optimization Methods in Chemical Engineering), Moscow: Khimiya, 1969.Google Scholar
  13. 13.
    Konkina, V.V. and Solovjev, D.S., Certificate of the State Registration of a Computer Program no. 2015613760 RU, 2015.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. S. Solovjev
    • 1
    • 2
    Email author
  • A. Yu. Potlov
    • 2
  • Yu. V. Litovka
    • 2
  1. 1.Tambov State University Named After G.R. DerzhavinTambovRussia
  2. 2.Tambov State Technical UniversityTambovRussia

Personalised recommendations