Abstract
A mathematical model that describes the kinetics of the extractional regeneration of a heterogeneous catalyst by a solvent, including that in its supercritical state, has been proposed. A comparison of the results of numerical and real experiments reveals their qualitative compliance over the entire time range of the process, as well as the quantitative agreement between them within the time range that corresponds to the high saturation of the catalyst with deactivating compounds.
This is a preview of subscription content, access via your institution.
References
Gumerov, F.M., Le Neindre, B., Sagdeev, A.A., and Sarimov, N.N., Regeneration of Spent Catalyst and Impregnation of Catalyst by Supercritical Fluid, New York: Nova Science, 2016.
Gumerov, F.M., Sagdeev, A.A., Bilalov, T.R., Gabitov, F.R., and Sarimov, N.N., Katalizatory: regeneratsiya s ispol’zovaniem sverkhkriticheskogo flyuidnogo CO2-ekstraktsionnogo protsessa (Catalysts: Regeneration Using a Supercritical Fluid CO2-Extraction Process), Kazan: Brig, 2015.
Johnston, K.P., New direction in supercritical fluid science and technology, Supercritical Fluid Science and Technology, Washington, DC: American Chemical Society, 1989, ch. 1, p.1.
Pichugin, A.A. and Tarasov, V.V., Supercritical extraction and prospects of the development of new zero-discharge processes, Usp. Khim., 1991, vol. 60, no. 11, p. 2412.
Yoo, K.-P. and Fukuzato, R., Current status of commercial development and operation of SCF technology in China, Japan, Korea and Taiwan, Proc. 8th Int. Symp. on Supercritical Fluids, Kyoto, 2006, PL-3, p.7.
Gumerov, F.M., Sabirzyanov, A.N., and Gumerova, G.I., Sub-i sverkhkriticheskie flyuidy v protsessakh pererabotki polimerov (Subcritical and Supercritical Fluids in Polymer Processing), Kazan: FEN, 2000.
Chernyshev, A.K., Gumerov, F.M., Tsvetinskii, G.N., Yarullin, R.S., Ivanov, S.V., Levin, B.V., Shafran, M.I., Zhilin, I.F., Beskov, A.G., and Chernyshev, K.A., Dioksid ugleroda. Svoistva, ulavlivanie (poluchenie), primenenie (Carbon Dioxide: Properties, Capture (Production), and Use), Moscow: Galleya-print, 2013.
Dadashev, M.N., Stepanov, G.V., and Nevruzov, I.A., Kinetics of supercritical fluid extraction, Theor. Found. Chem. Eng., 2001, vol. 35, no. 4, pp. 422–424. https://doi.org/10.1023/A:1010495624520
Tufano, V., A new attempt at the kinetic modeling of supercritical coal extraction, J. Supercrit. Fluids, 1991, vol. 4, no. 3, p.173.
Goto, M., Smith, J.M., and McCoy, B.J., Kinetics and mass transfer for supercritical fluid extraction of wood, Ind. Eng. Chem. Res., 1990, vol. 29, no. 2, p.282.
Reverchon, E. and Marrone, C., Modeling and simulation of the supercritical CO2 extraction of vegetable oils, J. Supercrit. Fluids, 2001, vol. 19, p.161.
Lucas, S., Calvo, M.P., Garcia-Serna, J., Palencia, C., and Cocero, M.J., Two-parameter model for mass transfer processes between solid matrixes and supercritical fluids: analytical solution, J. Supercrit. Fluids, 2007, vol. 41, p.257.
Nigmatulin, R.I., Dinamika mnogofaznykh sred (Dynamics of Multiphase Media), Moscow: Nauka, 1987, part2.
Anitescu, G. and Tavlarides, L.L., Solubilities of solids in supercritical fluids–I. New quasistatic experimental method for polycyclic aromatic hydrocarbons (PAHs) + pure fluids, J. Supercrit. Fluids, 1997, vol. 10, p. 175.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © N.N. Sarimov, A.T. Galimova, M.R. Khazipov, A.A. Sagdeev, F.M. Gumerov, 2018, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2018, Vol. 52, No. 1, pp. 45–52.
Rights and permissions
About this article
Cite this article
Sarimov, N.N., Galimova, A.T., Khazipov, M.R. et al. Mathematical Simulation of the Kinetics of Supercritical Fluid-Extraction Regeneration of a Heterogeneous Catalyst. Theor Found Chem Eng 52, 42–49 (2018). https://doi.org/10.1134/S0040579518010153
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0040579518010153