Skip to main content
Log in

Computational Fluid Dynamics of Co-Production of Zinc and Syngas in a Solar Reactor

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

In this paper, the production of Zn and H2 in a 4 kW solar reactor has been investigated. Utilization of a renewable energy source increases the importance of this work. The effect of changes in reactor geometry was analyzed, and, with changing different parameters, their effects were investigated. At constant thermal energy rate, with increasing CH4 inlet gas flow rate there is a decrease in reaction chamber temperature and therefore in reactor efficiency. Increasing rotation of reaction chamber causes its temperature to increase, where an increase of 150% in rotation caused a 1% increase in efficiency. With the increase in thermal energy rate, thermal efficiency was increased. Also, with increasing rate of thermal energy, the rate of chemical reaction that produces Zn and H2 increased. The geometry used in the light beams concentrator section causes the occurrence of maximum temperature in the desired point (cylindrical chamber) which increases system efficiency significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nowotny, J., Sorrell, C.C., Sheppard, L.R., and Bak, T., Solar-hydrogen: Environmentally safe fuel for the future, Int. J. Hydrogen Energy, 2005, vol. 30, p.521.

    Article  CAS  Google Scholar 

  2. Steinfeld, A. and Meier, A., Solar fuels and materials, Encyclopedia of Energy, 2004, vol. 5, p.623.

    Article  Google Scholar 

  3. Ummadisingu, A. and Soni, M., Concentrating solar power-technology: Potential and policy in India, Renewable Sustainable Energy Rev., 2011, vol. 15, p. 5169.

    Article  Google Scholar 

  4. Steinfeld, A. and Palumbo, R., Solar thermochemical process technology, Encyclopedia of Physical Science and Technology, 2001, vol. 15, p.237.

    Google Scholar 

  5. Pitz-Paal, R., Botero, N.B., and Steinfeld, A., Heliostat field layout optimization for high-temperature solar thermochemical processing, Sol. Energy, 2011, vol. 85, p.334.

    Article  CAS  Google Scholar 

  6. Steinfeld, A., Frei, A., Kuhn, P., and Wuillemin, D., Solar thermal production of zinc and syngas via combined ZnO-reduction and CH4-reforming processes, Int. J. Hydrogen Energy, 1995, vol. 20, p.793.

    Article  CAS  Google Scholar 

  7. Bilgen, E., Ducarroir, M., Foex, M., Sibieude, F., and Trombe, F., Use of solar energy for direct and two-step water decomposition cycles, Int. J. Hydrogen Energy, 1977, vol. 2, p.251.

    Article  CAS  Google Scholar 

  8. Weidenkaff, A., Steinfeld, A., Wokaun, A., Auer, P.O., Eichler, B., and Reller, A., Direct solar thermal dissociation of zinc oxide: Condensation and crystallization of zinc in the presence of oxygen, Sol. Energy, 1999, vol. 65, p.59.

    Article  CAS  Google Scholar 

  9. Chen, H., Siegel, N., Chen, Y., and Hsieh, H.T., Computational fluid dynamics modeling of gas-particle flow within a solid-particle solar receiver, J. Sol. Energy Eng., 2007, vol. 129, p.160.

    Article  Google Scholar 

  10. Schunk, L.O., Lipinski, W., and Steinfeld, A., Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO experimental validation at 10 kW and scale-up to 1 MW, Chem. Eng. J., 2009, vol. 150, p.502.

    Article  CAS  Google Scholar 

  11. Möller, S. and Palumbo, R., Solar thermal decomposition kinetics of ZnO in the temperature range 1950–2400 K, Chem. Eng. Sci., 2001, vol. 56, p. 4505.

    Article  Google Scholar 

  12. Villasmil, W., Brkic, M., Wuillemin, D., Meier, A., and Steinfeld, A., Pilot Scale Demonstration of a 100-kWth Solar Thermochemical Plant for the Thermal Dissociation of ZnO, J. Sol. Energy Eng., 2013, vol. 136, p. 1116.

    Google Scholar 

  13. Steinfeld, A., Brack, M., Meier, A., Weidenkaff, A., and Wuillemin, D., A solar chemical reactor for coproduction of zinc and synthesis gas, Energy, 1998, vol. 23, p.803.

    Article  CAS  Google Scholar 

  14. Kräupl, S. and Steinfeld, A., Experimental investigation of a vortex-flow solar chemical reactor for the combined ZnO-reduction and CH4-reforming, J. Sol. Energy Eng., 2001, vol. 123, p.237.

    Article  Google Scholar 

  15. Wieckert, C. and Steinfeld, A., Solar thermal reduction of ZnO using CH4:ZnO and C:ZnO molar ratios less than 1, J. Sol. Energy Eng., 2001, vol. 124, p.55.

    Article  Google Scholar 

  16. Osinga, T., Olalde, G., and Steinfeld, A., Solar carbothermal reduction of ZnO: Shrinking packed-bed reactor modeling and experimental validation, Ind. Eng. Chem. Res., 2004, vol. 43, p. 7981.

    Article  CAS  Google Scholar 

  17. Kräupl, S. and Steinfeld, A., Monte Carlo radiative transfer modeling of a solar chemical reactor for the coproduction of zinc and syngas, J. Sol. Energy Eng., 2005, vol. 127, p.102.

    Article  Google Scholar 

  18. Steinfeld, A., Solar thermochemical production of hydrogen: A review, Sol. Energy, 2005, vol. 78, p.603.

    Article  CAS  Google Scholar 

  19. Abanades, S., Charvin, P., Flamant, G., and Neveu, P., Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy, Energy, 2006, vol. 31, p. 2805.

    Article  CAS  Google Scholar 

  20. Wieckert, C., Guillot, E., Epstein, M., Santén, S., Osinga, T., Steinfeld, A., A 300 kW solar chemical pilot plant for the carbothermic production of zinc, J. Sol. Energy Eng., 2006, vol. 129, p. 190.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Neshat.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neshat, M.A., Kiani, M., Hassanzadeh, S. et al. Computational Fluid Dynamics of Co-Production of Zinc and Syngas in a Solar Reactor. Theor Found Chem Eng 52, 135–145 (2018). https://doi.org/10.1134/S0040579518010128

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579518010128

Keywords

Navigation