Skip to main content
Log in

Chemical Process Intensification with Pressure-Tunable Media

  • American-Russian Chemical Engineering Scientific School “Modeling and Optimization of Chemical Engineering Processes and Systems” May 23–25, 2016 (Kazan National Research Technological University)
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Pressure-tunable reaction media possess unique tunability of the physical and transport properties. This manuscript highlights how such media may be exploited for developing resource-efficient chemical technologies characterized by process intensification, high product selectivity, enhanced safety and facile separation steps. Alternative technology conceptsfor p-xylene oxidation and ozonolysis that employ pressuretunable media to demonstrate such process attributes are highlighted. Techno-economic and life cycle analyses reveal that the alternative processes possess process, economic and environmental benefits relative to incumbent technologies. Process intensification allows modularization of reactors and other unit operations, which is especially well suited for processing stranded or distributed resources such as biomass and shale gas to produce fuels and chemical intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Global Chemical Outlook (GCO), United Nations Environment Programme (UNEP), 2012. http://www.unep.org/pdf/GCO_Synthesis%20Report_ CBDTIE_ UNEP_September5_2012.pdf. Accessed May 10, 2017.

  2. IEA, Energy Technology Perspectives 2012. OECD/IEA, Paris, 2012. https://www.iea.org/publications/freepublications/publication/ETP2012_free.pdf. Accessed May 10, 2017.

  3. IEA. http://www.iea.org/publications/freepublications/publication/Chemical_Roadmap_2013_Final_WEB.pdf. Accessed May 10, 2017.

  4. http://www.ecofys.com/files/files/asn-ecofys-2013-world-ghg-emissions-flow-chart-2010.pdf. Accessed May 10, 2017.

  5. Anastas, P. and Warner, J.C., Green Chemistry: Theory and Practice, New York: Oxford Univ. Press, 1998.

    Google Scholar 

  6. Anastas, P. and Eghbali, N., Green chemistry: Principles and practice, Chem. Soc. Rev., 2010, vol. 39, p.301.

    Article  CAS  Google Scholar 

  7. Anastas, P. and Zimmerman, J., Design through the 12 principles of green engineering, J. Environ. Sci. Technol., 2003, vol. 37, p.95.

    Google Scholar 

  8. Sheldon, R.A., Consider the environmental quotient, Chemtech, 1994, vol. 24, p.38.

    CAS  Google Scholar 

  9. Sheldon, R.A., Arends, I.W.C.E., and Hanefeld, U., Green Chemistry and Catalysis, Weinheim: Wiley-VCH, 2007.

    Book  Google Scholar 

  10. Welton, T., Solvents and sustainable chemistry, Proc. R. Soc. A, 2015, vol. 471, p.502.

    Article  Google Scholar 

  11. Tundo, P., Anastas, P., Black, D.S., Breen, J., Collins, T., Memoli, S., Miyamoto, J., Poliakoff, M., and Tumas, W., Synthetic pathways and processes in green chemistry–Introductory overview, Pure Appl. Chem., 2000, vol. 72, p. 1207.

    Article  CAS  Google Scholar 

  12. DeSimone, J.M., Practical approaches to green solvents, Science, 2002, vol. 297, p.799.

    Article  CAS  Google Scholar 

  13. Adams, D.J., Dyson, P.J., and Tavener, S.J., Chemistry in Alternative Reaction Media, Chichester: Wiley, 2004.

    Google Scholar 

  14. Eckert, C.A., Liotta, C.L., Bush, B., Brown, J.S., and Hallett, J.P., Sustainable reactions in tunable solvents, J. Phys. Chem. B, 2004, vol. 108, p. 18108.

    Article  CAS  Google Scholar 

  15. Morgenstern, D.A., LeLacheur, R.M., Morita, D.K., Borkowsky, S.L., Feng, S., Brown, G.H., Luan, L., Gross, M.F., Burk, M.J., and Tumas, W., Supercritical carbon dioxide as a substitute solvent for chemical synthesis and catalysis, Green Chemistry: Designing Chemistry for the Environment, Anastas, P.T. and Williamson, T.C., Eds., ACS Symposium Series, vol. 626, Washington, DC: American Chemical Society, 1996, p.132.

    Article  CAS  Google Scholar 

  16. Jessop, P.G. and Leitner, W., Chemical Synthesis Using Supercritical Fluids, Weinheim: Wiley-VCH, 1999.

    Book  Google Scholar 

  17. Amandi, R., Hyde, J., and Poliakoff, M., Heterogeneous reactions in supercritical carbon dioxide, Carbon Dioxide Recovery and Utilization, Aresta, M., Ed., Dordrecht: Kluwer, 2003, p.169.

  18. DeSimone, J.M. and Tumas, W., Green Chemistry Using Liquid and Supercritical Carbon Dioxide, New York: Oxford Univ. Press, 2003.

  19. Gordon, C.M. and Leitner, W., Supercritical fluids as replacements for conventional organic solvents, Chimica Oggi, 2004, vol. 22, p.39.

    CAS  Google Scholar 

  20. Beckman, E.J., Using CO2 to produce chemical products sustainably, Environ. Sci. Technol., 2002, vol. 36, p.347.

    Article  Google Scholar 

  21. Arai, M., Fujita, S.I., and Shirai, M., Multiphase catalytic reaction in/under dense phase CO2, J. Supercrit. Fluids, 2009, vol. 47, p.351.

    Article  CAS  Google Scholar 

  22. Li, C.J. and Chan, T.H., Organic Reactions in Aqueous Media, New York: Wiley, 1997.

    Google Scholar 

  23. Cornils, B. and Herrmann, W.A., Aqueous-Phase Organometallic Catalysis, Weinheim: Wiley-VCH, 1998.

    Google Scholar 

  24. Savage, P.E., A perspective on catalysis in sub-and supercritical water, J. Supercrit. Fluids, 2009, vol. 47, p.407.

    Article  CAS  Google Scholar 

  25. Jessop, P.G. and Subramaniam, B., Gas-expanded liquids, Chem. Rev., 2007, vol. 107, p. 2666.

    Article  CAS  Google Scholar 

  26. Akien, G.R. and Poliakoff, M.A., Critical look at reactions in class I and II gas-expanded liquids using CO2 and other gases, Green Chem., 2009, vol. 11, p. 1083.

    Article  CAS  Google Scholar 

  27. Scurto, A.M., Hutchenson, K.W., and Subramaniam, B., Gas-expanded liquids (GXLs): Fundamentals and applications, Gas-Expanded Liquids and Near-Critical Media: Green Chemistry and Engineering, Hutchenson, K.W., Scurto, A.M., and Subramaniam, B., Eds., ACS Symposium Series, vol. 1006, Washington, DC: American Chemical Society, 2009, p.3.

    Article  CAS  Google Scholar 

  28. Wasserscheid, P. and Welton, T., Ionic Liquids in Synthesis, Weinheim: Wiley-VCH, 2002.

    Book  Google Scholar 

  29. Rogers, R.D., Seddon, K.R., and Volkov, S., Green Industrial Applications of Ionic Liquids, Dordrecht: Kluwer, 2003.

    Google Scholar 

  30. Parvulescu, V.I. and Hardacre, C., Catalysis in ionic liquids, Chem. Rev., 2007, vol. 107, p. 2615.

    Article  CAS  Google Scholar 

  31. Olivier-Bourbigou, H., Magna, L., and Morvan, D., Ionic liquids and catalysis: Recent progress from knowledge to applications, Appl. Catal., A, 2010, vol. 373, p.1.

    Article  CAS  Google Scholar 

  32. Jessop, P.G., Mercer, S.M., and Heldebrant, D.J., CO2-triggered switchable solvents, surfactants, and other materials, Energy Environ. Sci., 2012, vol. 5, p. 7240.

    Article  CAS  Google Scholar 

  33. Tomás, R.A.F., Bordado, J.C.M., and Gomes, J.F.P., p-Xylene oxidation to terephthalic acid: A literature review oriented toward process optimization and development, Chem. Rev., 2013, vol. 113, p. 7421.

    Article  Google Scholar 

  34. Sheehan, R.J., Terephthalic acid, dimethyl terephthalate, and isophthalic acid, in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2003, vol. 35, 6th ed., p.639.

    Google Scholar 

  35. Li, M., Niu, F., Zuo, X., Metelski, P.D., Busch, D.H., and Subramaniam, B., A spray reactor concept for catalytic oxidation of p-xylene to produce high-purity terephthalic acid, Chem. Eng. Sci., 2013, vol. 104, p.93.

    Article  CAS  Google Scholar 

  36. Lange, N., Lange’s Handbook of Chemistry, New York: McGraw-Hill, 1999, 15th ed.

    Google Scholar 

  37. Aspen HYSYS®, Version 7.1, Calgary, Alberta: Aspen Technologies, 2009.

  38. Abrams, K.J., Process for preparing aromatic carboxylic acids with efficient energy recovery by the oxidation of aromatic hydrocarbon feedstocks, US Patent 5723656 A, 1998.

  39. Osada, M. and Savage, P.E., Terephthalic acid synthesis at higher concentrations in high-temperature liquid water. 2. Eliminating undesired byproducts, AIChE J., 2009, vol. 55, no. 6, p. 1530.

    Article  CAS  Google Scholar 

  40. Tashiro, Y., Iwahama, T., Sakaguch, S., and Ishii, Y., A new strategy for the preparation of terephthalic acid by the aerobic oxidation of p-xylene using N-hydroxyphthalimide as a catalyst, Adv. Synth. Catal., 2001, vol. 343, p.220.

    Article  CAS  Google Scholar 

  41. Li, M., Ruddy, T., Fahey, D.R., Busch, D.H., and Subramaniam, B., Terephthalic acid production via greener spray process: Comparative economic and environmental impact assessments with mid-century process, ACS Sustainable Chem. Eng., 2014, vol. 2, p.823.

    Article  CAS  Google Scholar 

  42. Bozell, J.J. and Petersen, G.R., Technology development for the production of biobased products from biorefinery carbohydrates–the US Department of Energy’s “Top 10” revisited, Green Chem., 2010, vol. 12, pp.539.

    Article  CAS  Google Scholar 

  43. Gruter, G.J., The madness of green PET drop-in (from carbohydrates) versus the opportunities of its bio-PEF replacement, AIChE Netherlands/Belgium Section, Amsterdam, 2014. http://www.aiche.nl/images/presentations /2014-4-15-ldm.pdf. Accessed May 10, 2017.

    Google Scholar 

  44. Eerhart, A.J.J.E., Faaij, A.P.C., and Patel, M.K., Replacing fossil based PET with biobased PEF: Process analysis, energy and GHG balance, Energy Environ. Sci., 2012, vol. 5, p. 6407.

    Article  CAS  Google Scholar 

  45. Zuo, X., Venkitasubramanian, P., Busch, D.H., and Subramaniam, B., Optimization of Co/Mn/Br-catalyzed oxidation of 5-hydroxymethylfurfural to enhance 2,5-furandicarboxylic acid yield and minimize substrate burning, ACS Sustainable Chem. Eng., 2016, vol. 4, no. 7, p. 3659.

    Article  CAS  Google Scholar 

  46. Zuo, X., Chaudhari, A.S., Snavely, K.W., Niu, F., Zhu, H., Martin, K.J., and Subramaniam, B., Kinetics of 5-Hydroxymethylfurfural Oxidation to 2,5-Furandicarboxylic Acid with Co/Mn/Br Catalyst, AIChE J., 2017, vol. 63, no. 1, pp. 162–171. doi 10.1002/aic.15497

    Article  CAS  Google Scholar 

  47. Subramaniam, B., Zuo, X., Busch, D.H., and Venkitasubramanian, P., Process for producing both biobased succinic acid and 2,5-furandicarboxylic acid, Patent WO 2013/033081 A2, 2013.

    Google Scholar 

  48. Criegee, R., Mechanism of ozonolysis, Agnew. Chem. Int. Ed., 1975, vol. 14, no. 11, p.745.

    Article  Google Scholar 

  49. Lundin, M.D., Danby, A.M., Akien, G.A., Binder, T.J., Busch, D.H., and Subramaniam, B., Liquid CO2 as a Safer and Benign Solvent for the Ozonolysis of Fatty Acid Methyl Esters, ACS Sustainable Chem. Eng., 2015, vol. 3, no. 12, p. 3307.

    Article  CAS  Google Scholar 

  50. Goebel, C.G., Brown, A.C., Oehlschlaegar, H.F., and Rolfes, R.P., Method of making azelaic acid, US Patent 2813113, 1957.

    Google Scholar 

  51. Patnaik, P., A Comprehensive Guide to the Hazardous Properties of Chemical Substances, Hoboken, N.J.: Wiley, 2007.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bala Subramaniam.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramaniam, B. Chemical Process Intensification with Pressure-Tunable Media. Theor Found Chem Eng 51, 928–935 (2017). https://doi.org/10.1134/S004057951706015X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057951706015X

Keywords

Navigation