Skip to main content
Log in

Computational Simulation of Convective Heat Transfer of Turbulent Gas Flows

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The refined regularities of the transfer of the momentum and heat in an eddy boundary layer have been given. It has been shown that it is necessary to take them into account in the mathematical modeling of convective heat transfer from the eddy gas flow. The correctness of the proposed method has been verified by comparing the results of computational simulation with experimental data on the convective heat transfer of the eddy air flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butusov, O.B. and Meshalkin, V.P., Computer simulation of transient gas flows in complex round pipes, Theor. Found. Chem. Eng., 2008, vol. 42, no. 1, pp. 85–95. doi 10.1134/S0040579508010119

    Article  CAS  Google Scholar 

  2. Kuznetsov, V.A., Ryazantsev, O.A., and Trulev, A.V., Numerical modeling of combustion and heat transfer in a cement rotary furnace, Vestn. BGTU Im. V.G. Shukhova, 2011, no. 4, p.161.

    Google Scholar 

  3. Volchkov, É.P., Dvornikov, N.A., Lukashov, V.V., Borodulya, V.A., Teplitskii, Yu.S., and Pitsukha, E.A., Study of swirling gas-dispersed flows in vortex chambers of various structures in the presence and absence of combustion, J. Eng. Phys. Thermophys., 2012, vol. 85, no. 4, pp. 856–866. doi 10.1007/s10891-012-0724-8

    Article  CAS  Google Scholar 

  4. Volkov, K.N., Comparison of methods for wall boundary conditions as applied to the calculation of turbulent heat exchange characteristics, J. Eng. Phys. Thermophys., 2009, vol. 82, no. 3, pp. 466–475. doi 10.1007/s10891-009-0229-2

    Article  CAS  Google Scholar 

  5. Anikeev, A.A., Molchanov, A.M., and Yanyshev, D.S., Osnovy vychislitel’nogo teploobmena i gidrodinamiki (Fundamentals of Computational Heat Transfer and Hydrodynamics), Moscow: LIBROKOM, 2010.

    Google Scholar 

  6. Patankar, S.V. and Spalding, D.B., Heat and Mass Transfer in Boundary Layers, London: Morgan-Grampian, 1967.

    Google Scholar 

  7. Lapin, Yu.V. and Strelets, M.Kh., Vnutrennie techeniya gazovykh smesei (Internal Flows of Gas Mixtures), Moscow: Nauka, 1989.

    Google Scholar 

  8. Aleksin, V.A., Method of near-wall conditions for investigating flows and heat transfer at high turbulence intensity, Fluid Dyn., 2015, vol. 50, no. 3, pp. 412–429. doi 10.1134/S0015462815030102

    Article  CAS  Google Scholar 

  9. Laptev, A.G. and Basharov, M.M., Mathematical model and calculation of heat transfer coefficients of rough turbulent-flow-carrying channels, J. Eng. Phys. Thermophys., 2015, vol. 88, no. 3, pp. 681–687. doi 10.1007/s10891-015-1237-z

    Article  CAS  Google Scholar 

  10. Townsend, A.A., Equilibrium layers and wall turbulence, J. Fluid Mech., 1961, vol. 11, no. 1, pp. 97–120. doi 10.1017/S0022112061000883

    Article  Google Scholar 

  11. Van Driest, E.R., On turbulent flow near a wall, J. Aeronaut. Sci., 1956, vol. 23, no. 11, pp. 1007–1011. doi 10.2514/8.3713

    Article  Google Scholar 

  12. Kuznetsov, V.A., Refinement of wall-turbulence hypotheses, J. Eng. Phys., 1986, vol. 50, no. 6, pp. 640–644. doi 10.1007/BF00871531

    Article  Google Scholar 

  13. Gol'dshtik, M.A. and Shtern, V.N., Gidrodinamicheskaya ustoichivost' i turbulentnost' (Hydrodynamic Stability and Turbulence), Novosibirsk: Nauka, 1977.

    Google Scholar 

  14. den Toonder, J.M.J. and Nieuwstadt, F.T.M., Reynolds number effects in a turbulent pipe flow for low to moderate Re, Phys. Fluids, 1997, vol. 9, no. 11, p. 3398. doi 10.1063/1.869451

    Article  Google Scholar 

  15. Kuznetsov, V., Mathematic Simulating Processes in High-Temperature Plants, Saarbrücken: Scholars’ Press, 2015.

    Google Scholar 

  16. Zhukauskas, A. and Shlanchyauskas, A., Teplootdacha v turbulentnom potoke zhidkosti (Heat Transfer a Turbulent Fluid Flow), Vilnus: Mintis, 1973.

    Google Scholar 

  17. Pyadishyus, A. and Shlanchyauskas, A., Turbulentnyi perenos v pristennykh sloyakh (Turbulent Transport in Wall Layers), Vilnus: Mokslas, 1987.

    Google Scholar 

  18. Kuznetsov, V.A. and Kozhevnikov, V.P., A mathematical model of the free convection of air in a room, Izv. Vyssh. Uchebn. Zaved., Probl. Energ., 2008, nos. 7–8, p.15.

    Google Scholar 

  19. Polyanin, A.D. and Vyazmin, A.V., Differential-difference heat-conduction and diffusion models and equations with a finite relaxation time, Theor. Found. Chem. Eng., 2013, vol. 47, no. 3, pp. 217–224. doi 10.1134/S0040579513030081

    Article  CAS  Google Scholar 

  20. Zhukauskas, A.A., Konvektivnyi perenos v teploobmennikakh (Convective Transport in Heat Exchangers), Moscow: Nauka, 1982.

    Google Scholar 

  21. Tamonis, M., Radiatsionnyi i slozhnyi teploobmen v kanalakh (Radiation and Complex Heat Transfer in Channels), Vilnus: Mokslas, 1981.

    Google Scholar 

  22. Mikheev, M.A. and Mikheeva, I.M., Osnovy teploperedachi (Fundamentals of Heat Transfer), Moscow: Energiya, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kuznetsov.

Additional information

Original Russian Text © V.A. Kuznetsov, 2017, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2017, Vol. 51, No. 6, pp. 720–726.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, V.A. Computational Simulation of Convective Heat Transfer of Turbulent Gas Flows. Theor Found Chem Eng 51, 1063–1069 (2017). https://doi.org/10.1134/S0040579517060094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579517060094

Keywords

Navigation