Skip to main content
Log in

Non-Steady-State Convective Diffusion in a One-Dimensional Closed Loop

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Non-steady-state convective diffusion in a closed loop with a constant cross section and in a circuit containing a section with a different cross section and a piston flow regime of the circulating flow has been analyzed. The simple analytical dependences that describe the tracer concentration in an inlet cross section from the first recirculation cycle to an arbitrary nth cycle have been obtained. The analytical dependences for simulating chromatographic separation in a closed liquid–liquid loop have been obtained. It has been shown that, unlike conventional chromatographic methods, in recirculation chromatography, the efficiency of the separation can be improved by lengthening the connecting lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sokolov, V.N. and Domanskii, I.V., Gazozhidkostnye reaktory (Gas–Liquid Reactors), Leningrad: Mashinostroenie, 1976.

    Google Scholar 

  2. Reikhsfel'd, V.O., Shein, V.S., and Ermakov, V.I., Reaktsionnaya apparatura i mashiny zavodov osnovnogo organicheskogo sinteza i sinteticheskogo kauchuka (Reaction Equipment and Machinery of Basic Organic Synthesis and Synthetic Rubber Plants), Leningrad: Khimiya, 1985.

    Google Scholar 

  3. Novyi spravochnik khimika i tekhnologa. Protsessy i apparaty khimicheskikh tekhnologii (New Chemists and Process Engineers’ Handbook: Chemical Engineering Processes and Equipment), Ostrovskii, G.M., Ed., St. Petersburg: NPO Professional, 2006, part2.

  4. Novitskii, E.A., Highly selective synthesis of 1,2-dichloroethane in a gaslift reactor for direct high-temperature liquid-phase chlorination of ethylene, Cand. Sci. (Eng.) Dissertation, Irkutsk: OAO Irkutsk Research Inst. of Chemical Engineering, 2013.

    Google Scholar 

  5. Porter, R.S. and Johnson, J.F., Circular gas chromatograph, Nature, 1959, vol. 183, pp. 391–392. doi 10.1038/183391a0

    Article  CAS  Google Scholar 

  6. Seidel-Morgenstern, A. and Guiochon, G., Theoretical study of recycling in preparative chromatography, AIChE J., 1993, vol. 39, no. 5, pp. 809–819. doi 10.1002/aic.690390509

    Article  CAS  Google Scholar 

  7. Dingenen, J. and Kinkel, J.N., Preparative chromatographic resolution of racemates on chiral stationary phases on laboratory and production scales by closedloop recycling chromatography, J. Chromatogr. A, 1994, vol. 666, pp. 627–650. doi 10.1016/0021-9673(94)80423-0

    Article  CAS  Google Scholar 

  8. Chartor, F., Bailly, M., and Guiochon, G., Recycling in preparative liquid chromatography, J. Chromatogr. A, 1994, vol. 687, pp. 13–31. doi 10.1016/0021-9673(94)00728-4

    Article  Google Scholar 

  9. Heuer, C., Seidel-Morgenstern, A., and Hugo, P., Experimental investigation and modeling of closedloop recycling in preparative chromatography, Chem. Eng. Sci., 1995, vol. 50, pp. 1115–1127. doi 10.1016/0009-2509(94)00498-G

    Article  CAS  Google Scholar 

  10. Grill, C.M., Closed-loop recycling with periodic intraprofile injection: a new binary preparative chromatographic technique, J. Chromatogr. A, 1998, vol. 796, pp. 101–113. doi 10.1016/S0021-9673(97)01047-9

    Article  CAS  Google Scholar 

  11. Du, Q.-Z., Ke, C.-Q., and Ito, Y., Recycling highspeed countercurrent chromatography for separation of taxol and cephalomannine, J. Liq. Chromatogr. Relat. Technol., 1998, vol. 21, pp. 157–162. doi 10.1080/10826079808001944

    Article  CAS  Google Scholar 

  12. Oka, H., Iwaya, M., Harada, K., Suzuki, M., and Ito, Y., Recycling foam countercurrent chromatography, Anal. Chem., 2000, vol. 72, pp. 1490–1494. doi 10.1021/ac990974d

    Article  CAS  Google Scholar 

  13. Quinones, I., Grill, C.M., Miller, L., and Guiochon, G., Modeling of separations by closed-loop steady-state recycling chromatography of a racemic pharmaceutical intermediate, J. Chromatogr. A, 2000, vol. 867, pp. 1–21. doi 10.1016/S0021-9673(99)01128-0

    Article  CAS  Google Scholar 

  14. Han, Q.B., Song, J.Z., Qiao, C.F., Wong, L., and Xu, H.X., Preparative separation of gambogic acid and its C-2 epimer using recycling high-speed counter-current chromatography, J. Chromatogr. A, 2006, vol. 1127, pp. 298–301. doi 10.1016/j.chroma.2006.07.044

    Article  CAS  Google Scholar 

  15. Sreedhar, B., Damtew, A., and Seidel-Morgenstern, A., Theoretical study of preparative chromatography using closed-loop recycling with an initial gradient, J. Chromatogr. A, 2009, vol. 1216, pp. 4976–4988. doi 10.1016/j.chroma.2009.04.057

    Article  CAS  Google Scholar 

  16. Xie, J., Deng, J., Tan, F., and Su, J., Separation and purification of echinacoside fromPenstemon barbatus (Can.) Roth by recycling high-speed counter-current chromatography, J. Chromatogr. B, 2010, vol. 878, pp. 2665–2668. doi 10.1016/j.jchromb.2010.07.023

    Article  CAS  Google Scholar 

  17. Nagai, T., Mizobe, H., Otake, I., Ichioka, K., Kojima, K., Matsumoto, Y., Gotoh, N., Kuroda, I., and Wada, S., Enantiomeric separation of asymmetric triacylglycerol by recycle high-performance liquid chromatography with chiral column, J. Chromatogr. A, 2011, vol. 1218, pp. 2880–2886. doi 10.1016/j.chroma.2011.02.067

    Article  CAS  Google Scholar 

  18. Tong, S., Guan, Y.-X., Yan, J., Zheng, B., and Zhao, L., Enantiomeric separation of (R, S)-naproxen by recycling high speed counter-current chromatography with hydroxypropyl-β-cyclodextrin as chiral selector, J. Chromatogr. A, 2011, vol. 1218, pp. 5434–5440. doi 10.1016/j.chroma.2011.06.015

    CAS  Google Scholar 

  19. Siitonen, J., Sainio, T., and Kaspereit, M., Theoretical analysis of steady state recycling chromatography with solvent removal, Sep. Purif. Technol., 2011, vol. 78, pp. 21–32. doi 10.1016/j.seppur.2011.01.013

    Article  CAS  Google Scholar 

  20. Yang, J., Ye, H., Lai, H., Li, S., He, S., Zhong, S., Chen, L., and Peng, A., Separation of anthraquinone compounds from the seed of Cassia obtusifolia L. using recycling counter-current chromatography, J. Sep. Sci., 2012, vol. 35, pp. 256–262. doi 10.1002/jssc.201100535

    Article  CAS  Google Scholar 

  21. Liu, Q., Xiao, J., Yu, J., Xie, Y., Chen, X., and Yang, H., Improved enantioseparation via the twin-column based recycling high performance liquid chromatography, J. Chromatogr. A, 2014, vol. 1363, pp. 236–241. doi 10.1016/j.chroma.2014.07.040

    Article  CAS  Google Scholar 

  22. Siitonen, J. and Sainio, T., Steady state recycling chromatography with solvent removal—Effect of solvent removal constraints on process operation under ideal conditions, J. Chromatogr. A, 2014, vol. 1341, pp. 15–30. doi 10.1016/j.chroma.2014.03.039

    Article  CAS  Google Scholar 

  23. Meng, J., Yang, Z., Liang, J., Zhou, H., and Wu, S., Multi-channel recycling counter-current chromatography for natural product isolation: Tanshinones as examples, J. Chromatogr. A, 2014, vol. 1327, pp. 27–38. doi 10.1016/j.chroma.2013.12.069

    Article  CAS  Google Scholar 

  24. Kostanyan, A.E., Dil’man, V.V., Kostanyan, L.A., and Vasin, A.A., Dispersion of a substance in a circulation loop, Teor. Osn. Khim. Tekhnol., 1980, vol. 14, no. 6, p.871.

    CAS  Google Scholar 

  25. Countercurrent Chromatography, Menet, J.-M. and Thiebaut D., Eds., Chromatographic Science Series, vol. 82, New York: Marcel Dekker, 1999.

  26. Ito, Y., Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography, J. Chromatogr. A, 2005, vol. 1065, pp. 145–168. doi 10.1016/j.chroma.2004.12.044

    Article  CAS  Google Scholar 

  27. Berthod, A., Maryutina, T., Spivakov, B., Shpigun, O., and Sutherland, I.A., Countercurrent chromatography in analytical chemistry (IUPAC technical report), Pure Appl. Chem., 2009, vol. 81, no. 2, pp. 355–387. doi 10.1351/PAC-REP-08-06-05

    Article  CAS  Google Scholar 

  28. Conway, W.D., Counter-current chromatography: Simple process and confusing terminology, J. Chromatogr. A, 2011, vol. 1218, pp. 6015–6023. doi 10.1016/j.chroma.2011.03.056

    Article  CAS  Google Scholar 

  29. Ignatova, S., Hewitson, P., Mathews, B., and Sutherland, I., Evaluation of dual flow counter-current chromatography and intermittent counter-current extraction, J. Chromatogr. A, 2011, vol. 1218, pp. 6102–6106. doi 10.1016/j.chroma.2011.02.032

    Article  CAS  Google Scholar 

  30. Hewitson, P., Ignatova, S., and Sutherland, I.A., Intermittent counter-current extraction—Effect of the key operating parameters on selectivity and throughput, J. Chromatogr. A, 2011, vol. 1218, pp. 6072–6078. doi 10.1016/j.chroma.2011.03.072

    Article  CAS  Google Scholar 

  31. Friesen, J.B., Ahmed, S., and Pauli, G.F., Qualitative and quantitative evaluation of solvent systems for countercurrent separation, J. Chromatogr. A, 2015, vol. 1377, pp. 55–63. doi 10.1016/j.chroma.2014.11.085

    Article  CAS  Google Scholar 

  32. Bouju, E., Berthod, A., and Faure, K., Scale-up in centrifugal partition chromatography: The “free-space between peaks” method, J. Chromatogr. A, 2015, vol. 1409, pp. 70–78. doi 10.1016/j.chroma.2015.07.020

    Article  CAS  Google Scholar 

  33. Friesen, J.B., McAlpine, J.B., Chen, S.-N., and Pauli, G.F., Countercurrent separation of natural products: An update, J. Nat. Prod., 2015, vol. 78, pp. 1765–1796. doi 10.1021/np501065h

    Article  CAS  Google Scholar 

  34. Liu, Y., Friesen, J.B., Klein, L.L., McAlpine, J.B., Lankin, D.C., Pauli, G.F., and Chen, S.-N., The Generally Useful Estimate of Solvent Systems (GUESS) method enables the rapid purification of methylpyridoxine regioisomers by countercurrent chromatography, J. Chromatogr. A, 2015, vol. 1426, pp. 248–251. doi 10.1016/j.chroma.2015.11.046

    Article  CAS  Google Scholar 

  35. Ignatova, S. and Sutherland, I., The 8th International Conference on Counter-Current Chromatography held at Brunel University, London, UK, July 23–25, 2014, J. Chromatogr. A, 2015, vol. 1425, pp. 1–7. doi 10.1016/j.chroma.2015.10.096

    CAS  Google Scholar 

  36. Guan, Y.H., Hewitson, P., van den Heuvel, R.N.A.M., Zhao, Y., Siebers, R.P.G., Zhuang, Y.-P., and Sutherland, I., Scale-up protein separation on stainless steel wide bore toroidal columns in the type-J counter-current chromatography, J. Chromatogr. A, 2015, vol. 1424, pp. 102–110. doi 10.1016/j.chroma.2015.03.004

    Article  CAS  Google Scholar 

  37. Roehrer, S., Bezold, F., Garcia, E.M., and Minceva, M., Deep eutectic solvents in countercurrent and centrifugal partition chromatography, J. Chromatogr. A, 2016, vol. 1434, pp. 102–110. doi doi 10.1016/j.chroma.2016.01.024

    Article  CAS  Google Scholar 

  38. Kostanyan, A.E. and Voshkin, A.A., Analysis of cyclic liquid chromatography, Theor. Found. Chem. Eng., 2011, vol. 45, no. 1, pp. 68–74. doi 10.1134/S0040579510061028

    Article  CAS  Google Scholar 

  39. Kostanyan, A.E., Ignatova, S., Sutherland, I.A., Hewitson, P., Zakhodjaeva, Y.A., and Erastov, A.A., Steady-state and non-steady state operation of countercurrent chromatography devices, J. Chromatogr. A, 2013, vol. 1314, pp. 94–105. doi 10.1016/j.chroma.2013.08.100

    Article  CAS  Google Scholar 

  40. Kostanyan, A.E., Erastov, A.A., and Shishilov, O.N., Multiple dual mode counter-current chromatography with variable duration of alternating phase elution steps, J. Chromatogr. A, 2014, vol. 1347, pp. 87–95. doi 10.1016/j.chroma.2014.04.064

    Article  CAS  Google Scholar 

  41. Kostanyan, A.E., Multiple dual mode counter-current chromatography with periodic sample injection: Steady-state and non-steady-state operation, J. Chromatogr. A, 2014, vol. 1373, pp. 81–89. doi 10.1016/j.chroma.2014.11.014

    Article  CAS  Google Scholar 

  42. Kostanyan, A.E. and Erastov, A.A., Steady state preparative multiple dual mode counter-current chromatography: Productivity and selectivity. Theory and experimental verification, J. Chromatogr. A, 2015, vol. 1406, pp. 118–128. doi 10.1016/j.chroma.2015.05.074

    Article  CAS  Google Scholar 

  43. Kostanyan, A.E., Modeling of closed-loop recycling liquid–liquid chromatography: Analytical solutions and model analysis, J. Chromatogr. A, 2015, vol. 1406, pp. 156–164. doi 10.1016/j.chroma.2015.06.010

    Article  CAS  Google Scholar 

  44. van Deemter, J.J., Zuiderweg, F.J., and Klinkenberg, A., Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography, Chem. Eng. Sci., 1956, vol. 5, pp. 271–289.

    Article  Google Scholar 

  45. Chromatographic Theory and Basic Principles, Jonsson, J.A., Ed., Chromatographic Science Series, vol. 38, New York: Marcel Dekker, 1987.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Kostanyan.

Additional information

Original Russian Text © A.E. Kostanyan, 2017, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2017, Vol. 51, No. 6, pp. 678–686.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostanyan, A.E. Non-Steady-State Convective Diffusion in a One-Dimensional Closed Loop. Theor Found Chem Eng 51, 1021–1029 (2017). https://doi.org/10.1134/S0040579517060082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579517060082

Keywords

Navigation