Skip to main content
Log in

Experience in the Design and Reliable Operation of Ore-Pulp Precessional Mixers for Large-Volume Process Tanks

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The advantages of special smooth-wall apparatuses equipped with precession stirrers compared to typical process tanks equipped with the stiff shafts of stirrers have been shown. A one-dimensional mathematical model has been considered for describing the rotary velocity field and calculating the hydrodynamic loads used during the design of large-volume precession apparatuses for mixing ore pulps. The validity of the model has been confirmed experimentally using the literature data and a positive experience in the long-term operation of process tanks that are 50–1250 m3 in volume, which are designed for the dealkalization of high concentrations of ore suspensions of noble metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nienow, A.W., Stirring and stirred-tank reactors, Chem. Ing. Tech., 2014, vol. 86, no. 12, pp. 2063–2074. doi 10.1002/cite.201400087

    Article  CAS  Google Scholar 

  2. Ekato. The Book. Himmelsbach, W., Ed., Freiburg: Ekato Holding GmbH, 2012, 3rd ed.

  3. Atiemo-Obeng, V.A., Penney, W.R., and Armenante, P., Solid–liquid mixing, Handbook of Industrial Mixing: Science and Practice, Paul, E.L., Atiemo-Obeng, V.A., and Kresta, S.M., Eds., Hoboken, N.J.: Wiley, 2004, ch. 10, pp. 543–584.

  4. Zlokarnik, M., Rührtechnik: Theorie und Praxis, Berlin: Springer-Verlag, 1999.

    Book  Google Scholar 

  5. Nagata, S., Mixing: Principles and Applications, New York: Wiley, 1975.

    Google Scholar 

  6. Braginskii, L.N., Begachev, V.I., and Barabash, V.M., Peremeshivanie v zhidkikh sredakh (Mixing in Liquid Media), Leningrad: Khimiya, 1984.

    Google Scholar 

  7. Wu, J., Wang, S., Graham, L., Parthasarathy, R., and Nguyen, B., High solids concentration agitation for minerals process intensification, AIChE J., 2011, vol. 57, no. 9, pp. 2316–2324. doi 10.1002/aic.12468

    Article  CAS  Google Scholar 

  8. Sister, V.G. and Martynov, Yu.V., Printsipy povysheniya effektivnosti teplomassoobmennykh protsessov (Principles for Increasing the Efficiency of Heat and Mass Transfer Processes), Kaluga: Izd. Bochkarevoi, 1998.

    Google Scholar 

  9. Domanskii, I.V., Mil’chenko, A.I., and Vorob’ev-Desyatovskii, N.V., Large size agitators with precession impeller for ore slurries—Study, design, tests, Chem. Eng. Sci., 2011, vol. 66, no. 11, pp. 2277–2284. doi 10.1016/j.ces.2011.01.035

    Article  CAS  Google Scholar 

  10. Mil’chenko, A.I., Domanskii, I.V., Vorob’ev-Desyatovskii, N.V., and Kubyshkin, S.A., Design of precession impellers for ore pulp agitation in large-volume agitators, Proc. 15th Eur. Conf. on Mixing, Abiev, R., Ed., St. Petersburg, 2015, p.234.

    Google Scholar 

  11. Tamburini, A., Brucato, A., Busciglio, A., Cipollino, A., Grisafi, F., Micale, G., Scargiali, F., and Vella, G., Solid-liquid suspensions in top-covered unbaffled vessels: Influence of particle size, liquid viscosity, impeller size, and clearance, Ind. Eng. Chem. Res., 2014, vol. 53, pp. 9587–9599. doi 10.1021/ie500203r

    Article  CAS  Google Scholar 

  12. Bittorf, K.J. and Kresta, S.M., Prediction of cloud height for solid suspensions in stirred tanks, Chem. Eng. Res. Des., 2003, vol. 81, pp. 568–577. doi 10.1205/026387603765444519

    Article  CAS  Google Scholar 

  13. Krebs, R., Bauelemente rührtechnischer Apparate–Auslegungskriterien, Wirtschaftlichkeit, anwendungsorientierte Lösungen, Mischen und Rühren: Grundlagen und moderne Verfahren, Kraume, M., Ed., Weinheim: Wiley-VCH, 2003, ch. 7, pp. 147–174.

  14. Weetman, R.J. and Gigas, B., Mixer mechanical design–Fluid forces, Proc. 19th Int. Pump Users Symp., Houston, 2002, p.203.

    Google Scholar 

  15. Pavlushenko, I.S., Kostin, N.M., and Matveev, S.F., On stirrer speed in suspension stirring, Zh. Prikl. Khim., 1957, vol. 30, no. 8, p. 1160.

    CAS  Google Scholar 

  16. Mil’chenko, A.I., Sidorovich, P.A., and Serdyuk, V.I., New large-capacity apparatuses with mechanical stirring devices, Chem. Pet. Eng., 1986, vol. 22, no. 2, pp. 38–40. doi 10.1007/BF01148273

    Article  Google Scholar 

  17. Mil’chenko, A.I., Prikladnaya mekhanika. V dvukh chastyakh (Applied Mechanics: In Two Parts), Moscow: Akademiya, 2013, part2.

    Google Scholar 

  18. Krylov, A.N., Sobranie trudov. T. 10. Vibratsiya sudov (Collected Works, vol. 10: The Vibration of Ships), Moscow: AN SSSR, 1948.

    Google Scholar 

  19. GOST (State Standard) 28300-2010: The Cardan Shafts of a Tractive Drive for Diesel Locomotives and Diesel Trains: General Specifications, 2011.

  20. Kostin, N.M and Pavlushenko, I.S., Study of agitation, in Trudy LTI im. Lensoveta (Transactions of the Lensoviet Leningrad Institute of Technology), Leningrad: Goskhimizdat, 1957, vol. 41, p.131.

    Google Scholar 

  21. Domanskii, I.V., Apparatuses with stirring devices, Novyi spravochnik khimika i tekhnologa. Protsessy i apparaty khimicheskikh tekhnologii (New Chemists and Process Engineers’ Handbook: Chemical Engineering Processes and Equipment), Ostrovskii, G.M., Ed., St. Petersburg: Professional, 2004, part 1, p. 305–337.

    Google Scholar 

  22. Strek, F., Michani a michaci zarizeni, Prague: SNTL, 1977.

    Google Scholar 

  23. Vasil’tsov, E.A. and Ushakov, V.G., Apparaty dlya peremeshivaniya zhidkikh sred. Spravochnoe posobie (Apparatuses for the Agitation of Liquid Media: A Handbook), Leningrad: Mashinostroenie, 1979.

    Google Scholar 

  24. Mil’chenko, A.I., Domanskii, I.V., and Vorob’ev-Desyatovskii, N.V., Design of large-volume agitators for polydisperse suspensions, Russ. J. Appl. Chem., 2005, vol. 78, no. 12, pp. 1970–1976. doi 10.1007/s11167-006-0013-4

    Article  Google Scholar 

  25. Ibrahim, S. and Nienow, A.W., Particle suspension in the turbulent regime: The effect of impeller type and impeller/vessel configuration, Chem. Eng. Res. Des., 1996, vol. 74, no. 6, pp. 679–688.

    CAS  Google Scholar 

  26. GOST (State Standard) 20680-2002: Apparatuses with Mechanical Stirring Devices: General Specifications, 2002.

  27. Zhukovsky, N.E., The vortex theory of screw propellers, Tr. Otd. Fiz. Nauk O–va. Lyubit. Estestvozn., 1912, vol. 16, p.23.

    Google Scholar 

  28. Okulov, V.L., Sorensen, Zh.N., and van Kuik, G.A.M., Development of optimum rotor theories: The centennial of the Zhukovsky vortex theory of screw propellers, in Trudy TsAGI im. prof. N.E. Zhukovskogo (Transactions of the Zhukovsky Central Aero-Hydrodynamics Institute), Moscow, 2013, vol. 2713, p.72.

    Google Scholar 

  29. Danilov, A.T. and Seredokho, V.A., Sovremennoe morskoe sudno (Present-Day Seaworthy Boats), St. Petersburg: Sudostroenie, 2011.

    Google Scholar 

  30. Artyushkov, L.S., Achkinadze, A.Sh., and Rusetskii, A.A., Sudovye dvizhiteli (Marine Propellers), Leningrad: Sudostroenie, 1988.

    Google Scholar 

  31. Hruby, M. and Zaloudik, P., Axial thrust of mixers, Chem. Prum., 1965, vol. 15/40, no. 8, p.469.

    Google Scholar 

  32. Dickey, D.S. and Fasano, J.B., Mechanical design of mixing equipment, Handbook of Industrial Mixing: Science and Practice, Paul, E.L., Atiemo-Obeng, V.A., and Kresta, S.M., Eds., Hoboken, N.J.: Wiley, 2004, ch. 21, pp. 1247–1332.

    Google Scholar 

  33. Mil’chenko, A.I., Shchur, S.G., Mikhalev, M.F., Dem’yanova, E.M., and Shchuplyak, I.A., Liquid pressure and peripheral velocity distribution developed by a turbine (blade) agitator, Chem. Pet. Eng., 1976, vol. 12, no. 2, pp. 134–137. doi 10.1007/BF01144228

    Article  Google Scholar 

  34. Pavlushenko, I.S. and Dem’yanova, E.M., On a liquid flow under the conditions of agitation, Zh. Prikl. Khim., 1966, vol. 39, no. 7, p. 1492.

    CAS  Google Scholar 

  35. Fort, I., Flow and turbulence in vessels with axial impellers, Mixing: Theory and Practice, Uhl, V.W. and Gray, J.B., Eds., New York: Academic, 1986, vol. 3, p.133.

    Google Scholar 

  36. Proektirovanie polnoprivodnykh kolesnykh mashin (Design of All-Wheel Drive Vehicles), Polungyan, A.A., Ed., Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2008, vol.2.

  37. Getriebebau NORD: 2004/G1000-4/2004, Hamburg: Getriebebau NORD, 2004.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Vorob’ev-Desyatovskii.

Additional information

Original Russian Text © I.V. Domanskii, A.I. Mil’chenko, Yu.V. Sargaeva, S.A. Kubyshkin, N.V. Vorob’ev-Desyatovskii, 2017, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2017, Vol. 51, No. 6, pp. 687–699.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domanskii, I.V., Mil’chenko, A.I., Sargaeva, Y.V. et al. Experience in the Design and Reliable Operation of Ore-Pulp Precessional Mixers for Large-Volume Process Tanks. Theor Found Chem Eng 51, 1030–1042 (2017). https://doi.org/10.1134/S0040579517060021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579517060021

Keywords

Navigation