Skip to main content
Log in

Calculation of ethylene region of chemical technological complex for processing of cracking and pyrolysis gases

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

To create a chemical-technological complex for the joint processing of cracked gases and pyrolysis gases, the technique of its design was developed. Based on the design capacity of the pyrolysis and cracking units, mass flows of cracked gases and pyrogas entering the chemical-technological complex have been calculated. A scheme has been developed for the proposed complex. To reduce the dimension of the design task, the whole complex was divided into a separate region. Based on the stoichiometric and kinetic models, the calculation of material balances for all processes included in the largest ethylene region has been carried out. The technological parameters were taken from the operated industrial units and processes on the stage of design. The industrial productivity of reactor elements by the targeted products has been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Korakh, M. and Gashko, L., Teor. Osn. Khim. Tekhnol., 1968, vol. 2, no. 4, p. 125.

    Google Scholar 

  2. Ostrovskii, G.M. and Berezhinskii, T.A., Optimizatsiya khimiko-tekhnologicheskikh protsessov (Optimization of Chemical Processes), Moscow: Khimiya, 1984.

    Google Scholar 

  3. Ostrovskii, G.M. and Volin, Yu.M., Tekhnicheskie sistemy v usloviyakh neopredelennosti (Engineering Systems under Uncertainty Conditions), Moscow: Binom, 2008.

    Google Scholar 

  4. Ostrovskiy, G.M. and Volin, Yu.M., Metody optimizatsii slozhnykh khimiko-tekhnologicheskikh skhem (Methods of Optimization of Complex Chemical Engineering Systems), Moscow: Khimiya 1970.

    Google Scholar 

  5. Ostrovskii, G.M. and Volin, Yu.M., Modelirovanie slozhnykh khimiko-tekhnologicheskikh skhem (Simulation of Complex Chemical Engineering Systems), Moscow: Khimiya 1975.

    Google Scholar 

  6. Ostrovskiy, G.M., Berezhinskiy, T.A., and Belyaeva, A.R., Algoritmy optimizatsii khimiko-tekhnologicheskikh protsessov (Algorithms of Optimization of Chemical Processes), Moscow: Khimiya, 1978.

    Google Scholar 

  7. Nagiev, M.F., Teoriya retsirkulyatsii i povyshenie optimal’nosti khimicheskikh protsessov (Recirculation Theory and Enhancing the Optimality of Chemical Processes), Moscow: Nauka, 1970.

    Google Scholar 

  8. Nagiev, M.F., Osnovy razrabotki kompleksnykh khimicheskikh protsessov i proektirovaniya reaktorov (Principles of Development of Complex Chemical Processes and Reactor Design), Baku: Azerneshr, 1961.

    Google Scholar 

  9. Kafarov, V.V., Meshalkin, V.P., and Perov, V.P., Matematicheskie osnovy avtomatizirovannogo proektirovaniya khimicheskikh proizvodstv (Mathematical Foundations of Computer-Aided Design of Chemical Enterprises), Moscow: Khimiya, 1979.

    Google Scholar 

  10. Dantzig, G. and Wolfe, Ph., Decomposition principle for linear programs, Oper. Res., 1960, vol. 8, no. 1, p. 101.

    Article  Google Scholar 

  11. Pliskin, L.G., Bolkov, V.L., and Sagaidak, N.A., Primenenie informatsionnoi i upravlyayushchei vychislitel’noi tekhniki v kompleksnoi avtomatizatsii neftyanoi i khimicheskoi promyshlennosti (Application of Information and Control Computing in Integrated Automation of Oil and Chemical Industries), Baku: AzINTI, 1967.

    Google Scholar 

  12. Pliskin, L.G., On-line optimization of production complexes with a continuous technology, Extended Abstract of Doctoral (Eng.) Dissertation, Moscow: Inst. of Control Sciences, 1972.

    Google Scholar 

  13. Lebedev, S.S., On the decomposition of some applied problems of discrete optimization, Ekonom. Mat. Metody, 2008, vol. 44, no. 2, p. 121.

    Google Scholar 

  14. Sedov, A.V., Modelirovanie ob’ektov s diskretno raspredelennymi parametrami: Dekompozirsionnyi podkhod (Simulation of Objects with Discretely Distributed Parameters: Decomposition-Based Approach), Moscow: Nauka, 2012.

    Google Scholar 

  15. Chekanina, E.A., Optimal multilevel management of basic parameters of oil refining for increasing its efficiency, Cand. Sci. (Eng.) Dissertation, Moscow: Moscow State Technological Univ. “Stankin,” 2014.

    Google Scholar 

  16. Davudpur, M., Development and study of the decomposition method of discrete structure simulation, Cand. Sci. (Eng.) Dissertation, Moscow: Bauman Moscow State Technical Univ., 2006.

    Google Scholar 

  17. Nguen Suan Nguen, Principles of optimal functioning of complex chemical engineering systems (for flexible automated and energy-saving chemical plants as an example), Doctoral (Eng.) Dissertation, Moscow: Mendeleev Univ. of Chemical Technology of Russia, 1984.

    Google Scholar 

  18. Mesarović, M., Mako, D., and Takahara, Y., Theory of Hierarchical Multilevel Systems, New York: Academic, 1970.

    Google Scholar 

  19. Ostrovskii, G.M. and Volin, Yu.M., Metody global’noi optimizatsii slozhnykh system (Methods of Global Optimization of Complex Systems), Moscow: MISiS, 2005.

    Google Scholar 

  20. Ostrovskii, G.M., Volin, Yu.M., and Ziyatdinov, N.N., Optimizatsiya v khimicheskoi tekhnologii (Optimization in Chemical Engineering), Kazan: Fen, 2005.

    Google Scholar 

  21. Lapteva, T.V., Basic methodology of solving problems of designing optimal chemical engineering systems with account taken of uncertainty in the initial information, Doctoral (Eng.) Dissertation, Kazan: Kazan National Research Technological Univ., 2014.

    Google Scholar 

  22. Mishin, S.P., Optimization of hierarchical structures, in Mater. mezhd. nauchn. konf. “Sovremennye slozhnye sistemy upravleniya” (Proc. Int. Conf. on Contemporary Complex Control Systems), Stary Oskol, Belgorod oblast, 2002.

    Google Scholar 

  23. Voronin, L.A. and Mishin, S.P., Optimal’nye ierarkhicheskie strukrury (Optimal Hierarchical Structures), Moscow: Inst. Probl. Upravl., 2003.

    Google Scholar 

  24. Babichev, A.V. and Butkovskii, A.G., Hierarchy of the control and optimal control structures, Autom. Remote Control, 2003, vol. 64, no. 5, p. 740.

    Article  Google Scholar 

  25. Mishin, S.P., Optimal control of the organization system structure, Sb. Tr. mezhd. nauchn. konf. “Sovremennye slozhnye sistemy upravleniya” (Proc. Int. Conf. on Contemporary Complex Control Systems), Lipetsk: 2002, p. 101.

    Google Scholar 

  26. Romanov, V.N., Sistemnyi analiz (System Analysis), St. Petersburg: Severo-zapadnyi Tekhnol. Univ., 2005.

    Google Scholar 

  27. Gartman, T.N. and Klushin, D.V., Osnovy kompyuternogo modelirovaniya tekhnologicheskikh protsessov (Fundamentals of Computer Simulation of Technological Processes), Moscow: Akademkniga, 2006.

    Google Scholar 

  28. Volin, Yu.M. and Ostrovskiy, G.M., Three steps in the development of computer simulation of chemical engineering systems, Theor. Found. Chem. Eng., 2006, vol. 40, no. 3, p. 281.

    Article  CAS  Google Scholar 

  29. Pervukhin, I.D., Two-step problem of optimal design of chemical engineering systems with robust constraints under uncertainty conditions, Cand. Sci. (Eng.) Dissertation, Kazan: Kazan National Research Technological Univ., 2011.

    Google Scholar 

  30. Kafarov, V.V. and Meshalkin, V.P., Analiz i sintez khimiko-tekhnologicheskikh system (Analysis and Synthesis of Chemical Engineering Systems), Moscow: Khimiya, 1991.

    Google Scholar 

  31. Westerberg, A.W., A retrospective on design and process synthesis, Comput. Chem. Eng., 2004, vol. 28, no. 4, p. 447.

    Article  CAS  Google Scholar 

  32. Andreeva, N.G. and Lebedev, I.A., Sistemnyi analiz prorsessov khimicheskoi tekhnologii (System Analysis of Chemical Processes), Barnaul: AltGTU, 2006, part1.

    Google Scholar 

  33. Aliev, A.M., Safarov, A.R., Osmanova, I.I., and Aliev, F.V., Methods of statistical processing of oil refinery data, Azerb. Khim. Zh., 2013, no. 2, p. 44.

    Google Scholar 

  34. Aliev, A.M., Safarov, A.R., Aliev, F.V., and Alieva, Kh.A., Method of determination of average characteristics of the component composition of cracking gas, Azerb. Khim. Zh., 2013, no. 3, p. 9.

    Google Scholar 

  35. Rustamov, M.I., Gaisin, A.S., and Mamedov, D.N., Sovremennyi spravochnik po neftyanym toplivam i tekhnologiyam ikh proizvodstva (Contemoirary Handbook on Oil Fuels and Their Production Technologies), Baku: Khimik, 2005.

    Google Scholar 

  36. Mirdzhayanova, T.M., Methods of optimization of chemical technology complexes: Development and application to solving practical problems, Cand. Sci. (Eng.) Dissertation, Baku: Inst. of Theoretical Problems of Chemical Technology, 1975.

    Google Scholar 

  37. Aliev, A.M., Tairov, A.Z., Guseinova, A.M., Babaev, A.I., and Ismailov, N.R., Safarov, A.R., Osmanova, I.I., and Aliev, F.V., Mathematical modeling and intensification of industrial processes of pyrolysis of hydrocarbon gases and their mixtures with feedback, Khim. Prom-st., 2011, vol. 88, no. 4, p. 163.

    CAS  Google Scholar 

  38. Aliev, A.M., Tairov, A.Z., Guseinova, A.M., Ismailov, N.R., and Shakhtakhtinskiy, T.N., Optimum zoned fuel gas supply to the coil of an ethane pyrolysis furnace, Theor. Found. Chem. Eng., 2010, vol. 44, no. 6, p. 913.

    Article  CAS  Google Scholar 

  39. Polyakov, A.V., Duntov, D.I., and Sofiev, A.E., Polietilen vysokogo davleniya: Nauchno-tekhnicheskie osnovy promyshlennogo sinteza (High-Pressure Polyethylene of. Scientific and Engineering Foundations of Industrial Synthesis), Leningrad: Khimiya, 1988.

    Google Scholar 

  40. Lebedev, N.N., Teoriya khimicheskikh protsessov osnovnogo organicheskogo i neftekhimicheskogo sinteza (Theory of Chemical Processes of Basic Organic and Petrochemical Syntheses), Moscow: Khimiya, 1988.

    Google Scholar 

  41. Zhuravlev, V.A., Raschet material’nykh balansov pri proektirovanii proizvodstv organicheskogo sinteza (Material Balance Calculations in Designing Organic Synthesis Plants), Kemerovo: Kuzbasskii Gos. Tekh. Univ., 2012.

    Google Scholar 

  42. Gel’bshtein, A.I. Bakshi, Yu.M., and Temkin, M.I., Kinetics of the vapor-phase hydration of ethylene over a phosphoric acid catalyst, Dokl. Akad. Nauk, 1960, vol. 132, p. 384.

    Google Scholar 

  43. Aliev, A.M., Kuliev, A.R., Medjidova, S.M., Safarov, A.R., Ibragimov, Z.I., and Tairov, A.Z., Study of the kinetics and mechanism of vapor-phase ethanol oxidation into acetic acid over natural klinoptilolite modified with Cu2+, Mn2+, and Pd2+ ions, Azerb. Khim. Zh., 2005, no. 1, p. 10.

    Google Scholar 

  44. Aliev, A.M., Tairov, A.Z., Safarov, A.R., and Yusifov, R.Yu., Theoretical optimization of the vapor-phase catalytic esterification of acetic acid with ethanol, Azerb. Khim. Zh., 2005, no. 2, p. 22.

    Google Scholar 

  45. Safarov, A.R., Simulation and optimization of theproduction of acetic acid and ethyl acetate via a combined technology, Cand. Sci. (Eng.) Dissertation, Baku: Inst. of Chemical Problems, 2006.

    Google Scholar 

  46. Kengerli, A.S., Mathematical modeling and optimization of the alkylation of benzene with ethylene in bubbling reactors, Cand. Sci. (Eng.) Dissertation, Baku: Inst. of Theoretical Problems of Chemical Technology, 1975.

    Google Scholar 

  47. Nauchno-tekhnicheskii otchet laboratorii khimiko-tekhnologicheskikh processov (Scientific and Technical Report of the Laboratory of Chemical Processes), Baku: Inst. of Theoretical Problems of Chemical Technology, 1985.

  48. Safin, N.A., Development of an automatic control system for a styrene suspension polymerization reactor with account taken of the kinetics of the process, Cand. Sci. (Eng.) Dissertation, Moscow: Mendeleev Univ. of Chemical Technology of Russia, 2014.

    Google Scholar 

  49. Litvishkov, Yu.N., Tret’yakov, V.F., Talyshinskiy, R.M., Askerova, A.I., Kulieva, L.A., and Shakunova, I.V., Microwave intensification of toluene dealkylation with water vapor in the presence of catalysts with a nanostructured active component, Nanotekhnol.: Nauka Proizvod., 2012, no. 2, p. 62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Aliev.

Additional information

Original Russian Text © A.M. Aliev, A.R. Safarov, A.M. Guseinova, 2017, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2017, Vol. 51, No. 4, pp. 397–410.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliev, A.M., Safarov, A.R. & Guseinova, A.M. Calculation of ethylene region of chemical technological complex for processing of cracking and pyrolysis gases. Theor Found Chem Eng 51, 404–417 (2017). https://doi.org/10.1134/S0040579517040169

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579517040169

Keywords

Navigation