Skip to main content
Log in

Effect of microgel structure on epoxy polymer curing in the presence of carbon nanotubes

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The catalytic effect of carbon nanotubes on epoxy polymer curing has been studied using the fractal method. The fractal dimension of epoxy microgels has been shown to be reduced by the interaction with the surface of carbon nanotubes. This effect is the only factor that contributes to the acceleration of epoxy crosslinking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Puglia, D., Valentini, L., and Kenny, J.M., Analysis of the cure reaction of carbon nanotubes/epoxy resin composites through thermal analysis and raman spectroscopy, J. Appl. Polym. Sci., 2003, vol. 88, no. 2, pp. 452–458.

    Article  CAS  Google Scholar 

  2. Xie, H., Liu, B., Yuan, Z., Shen, J., and Cheng, R., Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry, J. Polymer Sci., Part B: Polym. Phys., 2004, vol. 42, no. 20, pp. 3701–3712.

    Article  CAS  Google Scholar 

  3. Tao, K., Yang, S., Grunlan, J.S., Kim, Y.-S., Dang, B., Deng, Y., Thomas, R.L., Wilson, B.L., and Wei, X., Effects of carbon nanotube fillers on the curing processes of epoxy resin-based composites, J. Appl. Polym. Sci., 2006, vol. 102, no. 6, pp. 5248–5254.

    Article  CAS  Google Scholar 

  4. Nafadzokova, L.Kh. and Kozlov, G.V., Fraktal’nyi analiz i sinergetika kataliza v nanosistemakh (Fractal Analysis and Catalysis Synergism in Nanosystems), Moscow: Akad. Estestvoznaniya, 2009.

    Google Scholar 

  5. Magomedov, G.M. and Kozlov, G.V., Sintez, struktura i svoistva setchatykh polimerov i nanokompozitov na ikh osnove (Synthesis, Structure and Properties of Network Polymers and Related Nanocomposites), Moscow: Akad. Estestvoznaniya, 2010.

    Google Scholar 

  6. Kozlov, G.V., Temiraev, K.B., and Kaloev, N.I., Effect of a solvent nature on the structure and the formation mechanism of polyarylate in low-temperature polycondensation, Dokl. Phys. Chem., 1998, vol. 362, nos. 4–6, pp. 319–322.

    Google Scholar 

  7. Schaefer, D.W. and Justice, R.S., How nano are nanocomposites? Macromolecules, 2007, vol. 40, no. 24, pp. 8501–8517.

    Article  CAS  Google Scholar 

  8. Kozlov, G.V., Yanovskii, Yu.G., Zhirikova, Z.M., Aloev, V.Z., and Karnet, Yu.N., Geometry of carbon nanotubes in polymer composite matrices, Mekh. Kompozit. Mater. Konstr., 2012, vol. 18, no. 1, pp. 131–153.

    CAS  Google Scholar 

  9. Bridge, B., Theoretical modeling of the critical volume fraction for percolation conductivity of fibre-loaded conductive polymer composites, J. Mater. Sci. Lett., 1989, vol. 8, no. 2, pp. 102–103.

    Article  CAS  Google Scholar 

  10. Mikitaev, A.K., Kozlov, G.V., and Zaikov, G.E., Polimernye nanokompozity: Mnogoobrazie strukturnykh form i prilozhenii (Polymer Composites: Diversity of Structural Forms and Applications), Moscow: Nauka, 2009.

    Google Scholar 

  11. Yanovsky, Yu.G., Kozlov, G.V., Zhirikova, Z.M., Aloev, V.Z., and Karnet, Yu.N., Specific features of the structure of carbon nanotubes in polymer composite media, Nanomech. Sci. Technol., 2012, vol. 3, no. 2, pp. 99–124.

    Google Scholar 

  12. Hentschel, H.G.E. and Deutch, J.M., Flory-type approximation for the fractal dimension of cluster-cluster aggregates, Phys. Rev. A, 1984, vol. 29, no. 3, pp. 1609–1611.

    Article  CAS  Google Scholar 

  13. Djordjevič, Z.,An observation of scaling in trapping reactions, in Fractals in Physics, Pietronero, L. and Tosatti, E., Eds., Amsterdam: Elsevier, 1986, p. 413.

    Chapter  Google Scholar 

  14. Kobayashi, M., Yoshioka, T., Imai, M., and Itoh, Y., Structural ordering on physical gelation of syndiotactic polystyrene dispersed in chloroform studied by timeresolved measurements of small angle neutron scattering (SANS) and infrared spectroscopy, Macromolecules, 1995, vol. 28, no. 22, pp. 7376–7385.

    Article  CAS  Google Scholar 

  15. Nafadzokova, L.Kh., Kozlov, G.V., and Zaikov, G.E., Fractal model of the kinetics of solid-phase imidization in the presence of a nanofiller, Theor. Found. Chem. Eng., 2007, vol. 41, no. 4, pp. 392–400.

    Article  CAS  Google Scholar 

  16. Kozlov, G.V., Ovcharenko, E.N., and Zaikov, G.E., Fractal model of the cracking resistance of modified polyethylene, Theor. Found. Chem. Eng., 2008, vol. 42, no. 4, pp. 439–442.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Mikitaev.

Additional information

Original Russian Text © A.K. Mikitaev, G.V. Kozlov, 2016, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2016, Vol. 50, No. 4, pp. 447–451.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikitaev, A.K., Kozlov, G.V. Effect of microgel structure on epoxy polymer curing in the presence of carbon nanotubes. Theor Found Chem Eng 50, 444–448 (2016). https://doi.org/10.1134/S0040579516040424

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579516040424

Keywords

Navigation