Skip to main content
Log in

Chromatography membrane techniques as the prospect of creating technological processes for the continuous extraction separation of substances

  • Selected Articles from the Journal Khimicheskaya Tekhnologiya
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The expediency of developing new sorption and extraction methods of separation of substances has been proved based on the differences in their interfacial distribution and the principles of improving the methods of performing processes of interphase distribution. The possibility of implementing the idea of twodimensional chromatography is considered based on the methodology chromatomembrane mass transfer process. The schemes of the continuous extraction-chromatographic liberation of gold, platinum (IV), and palladium (II) are described with simultaneous separation from the impurities of base metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin, A.J.P. and Synge, R.L.M., A new form of chromatogram employing two liquid phases, Biochem. J., 1941, vol. 35, no. 12, pp. 1358–1368.

    Article  CAS  Google Scholar 

  2. Martin, A.J.P., Summarizing paper, Discuss. Faraday Soc., 1949, vol. 7, pp. 332–336.

    Article  Google Scholar 

  3. Sussman, N.V. and Huang, C.C., Continuous gas chromatography, Science, 1967, vol. 156, no. 3777, pp. 974–976.

    Article  CAS  Google Scholar 

  4. Solms, J., Kontinuierliche papier chromatographie, Helv. Chim. Acta, 1955, vol. 38, no. 5, pp. 1127–1133.

    Article  CAS  Google Scholar 

  5. Cole, L.G. and Hall, L.G., US Patent 2891630, 1959.

    Google Scholar 

  6. Heaton, W.B., US Patent 3077103, 1963.

    Google Scholar 

  7. Moiser, L.G., US Patent 3078647, 1963.

    Google Scholar 

  8. Moskvin, L.N. and Tsaritsyna, L.G., Continuous chromatographic separation of multicomponent mixtures: II. The position of maxima in output curves, Radiokhimiya, 1970, vol. 12, no 5 pp. 731–736.

    Google Scholar 

  9. Kozhin, S.A., Moskvin, L.N., Fleisher, A.Yu., and Epifanova, I.O., Separation of essential oils by liquid–liquid partition chromatography using the reversedphase technique, Zh. Obsh. Khim., 1973, vol. 43, pp. 428–434.

    CAS  Google Scholar 

  10. Moskvin, L.N., Mozzhukhin, A.V., and Tsaritsyna, L.G., Continuous separation of multicomponent mixtures by ion-exchange chromatography, Zh. Anal. Khim., 1975, vol. 30, no. 1, pp. 39–43.

    CAS  Google Scholar 

  11. Taramasso, M., Considerations for the design of a rotating unit for continuous production by gas chromatography and its applications, J. Chromatogr., 1970, vol. 49, no. 1, pp. 27–35.

    Article  CAS  Google Scholar 

  12. Khun, W., Narten, A., and Thürkauf, M., Gas-Chromatographie (Verfahren zur kontinuierlichen Trennung eines Gemishes mit mehreren Komponenten in einem Zweiphasen-Gegenstrom mit Temperatur gefä)lle), Helv. Chim. Acta, 1958, vol. 41, pp. 2135–2148.

    Article  Google Scholar 

  13. Moskvin, L.N., Gumerov, M.F., and Gorshkov, A.I., Liquid–gas partition chromatography, Zh. Prikl. Khim., 1974, vol. 47, no. 8, pp. 1867–1870.

    CAS  Google Scholar 

  14. Imamoglu, S., Simulated moving bed chromatography (SMB) for application in bioseparation, Adv. Biochem. Eng., 2002, vol. 76, no. 1, pp. 211–231.

    CAS  Google Scholar 

  15. Conway, W.D. and Petroski, R.J., Modern Countercurrent Chromatography, Washington, DC: Am. Chem. Soc., 1995.

    Book  Google Scholar 

  16. Moskvin, L.N., Chromatomembrane separation of substances, Dokl. Akad. Nauk, 1994, vol. 334, no. 5, pp. 599–603.

    CAS  Google Scholar 

  17. Moskvin, L.N. and Rodinkov, O.V., Chromatomembrane methods: Physicochemical principles, analytical and technological possibilities, Russ. Chem. Bull., 2012, vol. 61, no. 4, pp. 723–740.

    Article  CAS  Google Scholar 

  18. Moskvin, L.N., Grigor’ev, G.L., Rodinkov, O.V., Sedov, V.M., and Senchik, K. Yu., Chromatomembrane blood oxygenation: Optimizing the blood–air mass transfer conditions, Kliniko-Lab. Konsilium, 2005, no. 8, pp. 41–44.

    Google Scholar 

  19. Moskvin, L.N., Rodinkov, O.V., Grigor’ev, G.L., and Zykin, I.A., Chromatomembrane gas-extraction water purification to remove dissolved oxygen, Russ. J. Appl. Chem., 2002, vol. 75, no. 8, pp. 1227–1230.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Rodinkov.

Additional information

Original Russian Text © L.N. Moskvin, O.V. Rodinkov, 2015, published in Khimicheskaya Tekhnologiya, 2015, Vol. 16, No. 4, pp. 251–256.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskvin, L.N., Rodinkov, O.V. Chromatography membrane techniques as the prospect of creating technological processes for the continuous extraction separation of substances. Theor Found Chem Eng 50, 655–659 (2016). https://doi.org/10.1134/S0040579516040230

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579516040230

Keywords

Navigation