Skip to main content
Log in

Application of the extraction-pyrolysis method in formation of bioactive coatings

  • Selected Articles from the Journal Khimicheskaya Tekhnologiya
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The possibility of applying the extraction-pyrolysis method combined with the plasma electrolytic oxidation method in fabrication of layers with required chemical composition and properties on various materials has been investigated. The coatings have good prospects for improving the corrosion resistance, chemical inertness, and biocompatibility of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rudnev, V.S., Multiphase anodic layers and prospects of their application, Protect. Met., 2008, vol. 44, no. 3, pp. 263–272.

    Article  CAS  Google Scholar 

  2. Khol'kin, A.I., and Patrusheva, T.N., Ekstraktsionnopiroliticheskii metod: poluchenie funktsional’nykh oksidnykh materialov (Extraction–Pyrolysis Method: Fabrication of Functional Oxide Materials), Moscow: Kom-Kniga, 2006.

    Google Scholar 

  3. Medkov, M.A., Storozhenko, P.A., Tsirlin, A.M., Steblevskaya, N.I., Panin, E.S., Grishchenko, D.N., and Kubakhova G.S., ZrO2 coatings on SiC fibers, Inorg. Mater., 2007, vol. 43, no. 2, pp. 162–166.

    Article  CAS  Google Scholar 

  4. Steblevskaya, N.I., Grishchenko, D.N., Medkov, M.A., and Smol’kov, A.A., Extraction of bismuth with trialkylbenzylammonium chloride from chloride solutions in the presence of dibenzoylmethane, acetylacetone, hexyl methyl ketone, or octanol, Russ. J. Inorg. Chem., 2000, vol. 45, no. 10, pp. 1616–1618.

    Google Scholar 

  5. Steblevskaya, N.I., Medkov, M.A., Rudnev, V.S., Belobeletskaya, M.V., Kilin, K.N., and Grishchenko, D.N., Coatings of tantalum oxide on steel, Khim. Tekhnol., 2013, vol. 14, no. 10, pp. 592–598.

    CAS  Google Scholar 

  6. Medkov, M.A., Grishchenko, D.N., Steblevskaya, N.I., Malyshev, I.V., Rudnev, V.S., and Kudryavyi, V.G., Synthesis of nanosized powders and coatings of calcium phosphates, Theor. Found. Chem. Eng., 2012, vol. 46, no. 5, pp. 541–545.

    Article  CAS  Google Scholar 

  7. Medkov, M.A., Grishchenko, D.N., Rudnev, V.S., and Kudryavyi, V.G., Formation of glass-ceramic coatings on bioinert substrates, Glass Ceram., 2014, vol. 70, no. 11–12, pp. 417–421.

    Article  CAS  Google Scholar 

  8. Rudnev, V.S., Morozova, V.P., Lukiyanchuk, I.V., and Adigamova, M.V., Calcium-containing biocompatible oxide-phosphate coatings on titanium, Russ. J. Appl. Chem., 2010, vol. 83, no. 4, pp. 671–679.

    Article  CAS  Google Scholar 

  9. Brunette, D.M., Tengvall, P., Textor, M., and Thomsen, P., Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Response and Medical Applications, Berlin: Springer-Verlag, 2001.

    Book  Google Scholar 

  10. Kalita, V.I., Physics and chemistry of the formation of bioinert and bioactive surfaces on implants (Review), Fiz. Khim. Obrab. Mater., 2000, no. 5, pp. 28–45.

    Google Scholar 

  11. Daculsi, G., Laboux, O., Malard, O., and Weiss, P., Current state of the art of biphasic calcium phosphate bioceramics, J. Mater. Sci. Mater. Med., 2003, vol. 14, no. 3, pp. 195–200.

    Article  CAS  Google Scholar 

  12. Wei, D.Q., Zhou, Y., Jia, D.C., and Wang, Y.M., Effect of heat treatment on the structure and in vitro bioactivity of microarc-oxidized (MAO) titania coatings containing Ca and P ions, Surf. Coat. Technol., 2007, vol. 201, no. 21, pp. 8723–8729.

    Article  CAS  Google Scholar 

  13. Alekseevskii, S.A., Vasilevich, S.V., and Komlev, A.E., Effect of implants with negative electret coatings Ta2O5 on reparative processes of tendogenesis in the experiment and the first experience of their clinic application, Voen.-Med. Zh., 2009, vol. 330, no. 4, pp. 70–72.

    Google Scholar 

  14. Roy, M., Balla, V.K., Bandyopadhyay, A., and Bose, S., MgO-doped tantalum coating on Ti: Microstructural study and biocompatibility evaluation, ACS Appl. Mater. Interfaces, 2012, vol. 4, no. 2, pp. 577–580.

    Article  CAS  Google Scholar 

  15. Donkov, N., Zykova, A., Safonov, V., Matveev, E., Modern methods of Ta2O5 coatings deposition for biomedical application, Probl. Atomic. Sci. Technol., 2009, vol. 15, no. 1, pp. 153–155.

    CAS  Google Scholar 

  16. Li, Y., Zhao, T.T., Wei, S.B., Xiang, Y., and Chen, H., Effect of Ta2O5/TiO2 thin film on mechanical properties, corrosion and cell behavior of the NiTi alloy implanted with tantalum, Mater. Sci. Eng. C-Mater. Biol. Appl., 2010, vol. 30, no. 8, pp. 1227–1235.

    Article  CAS  Google Scholar 

  17. Bigi, A., Cojazzi, G., Panzavolta, S., Ripamonti, A., Roveri, N., and Romanello, M., Chemical and structural characterization of the mineral phase from cortical and trabecular bone, J. Inorg. Biochem., 1997, vol. 68, no 1, pp. 45–51.

    Article  CAS  Google Scholar 

  18. Becker, R.O., Spadaro, J.A., and Berg, E.W., The trace elements of human bone, J. Bone Joint Surg. Am., 1968, vol. 50, no. 2, pp. 326–334.

    CAS  Google Scholar 

  19. Canalis, E., Giustina, A., and Bilezikian, J.P., Mechanisms of anabolic therapies for osteoporosis, N. Engl. J. Med, 2007, vol. 357, no 9, pp. 905–916.

    Article  CAS  Google Scholar 

  20. Gorbenko, F.P. Kuchkina, E.D., and Olevinsky, M.I., Study of extraction of thiocyanate complexes of alkaline earth elements, J. Anal. Chem.-USSR, 1968, vol. 23, no. 9, pp. 1301–1306.

    CAS  Google Scholar 

  21. Dorozhkin, S.V., Bioceramics of calcium orthophosphates, Biomaterials, 2010, vol. 31, no. 7, pp. 1465–1485.

    Article  CAS  Google Scholar 

  22. Chen, Q.Z.Z., Thompson, I.D., and Boccaccini, A.R., 45S5 Bioglass (R)-derived glass-ceramic scaffolds for bone tissue engineering, Biomaterials, 2006, vol. 27, no. 11, pp. 2414–2425.

    Article  CAS  Google Scholar 

  23. Volozhin, G.A., Alekhin, A.P., Markeev, A.M., Tetyuhin, D.V., Kozlov, E.N., and Stepanova M.A., Influence of physico-chemical properties of the surface of titanium implants and the methods for their modification on indicators of osseointegration, The Dental Institute, 2009, no. 3 (44), pp. 81–83.

    Google Scholar 

  24. Hanson, S. and Norton, M., The relation between surface roughness and interfacial shear strength for boneanchored implants. A mathematical model, J. Biomech., 1999, no. 32, pp. 829–836.

    Article  Google Scholar 

  25. Putlyaev, V.I. and Safronova, T.V., A new generation of calcium phosphate biomaterials: The role of phase and chemical compositions, Glass Ceram., 2006, vol. 63, no. 3–4, pp. 99–102.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Medkov.

Additional information

Original Russian Text © M.A. Medkov, V.S. Rudnev, T.P. Yarovaya, N.I. Steblevskaya, P.M. Nedozorov, M.V. Belobeletskaya, D.N. Grishchenko, I.V. Lukiyanchuk, 2015, published in Khimicheskaya Tekhnologiya, 2015, Vol. 16, No. 4, pp. 193–200.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medkov, M.A., Rudnev, V.S., Yarovaya, T.P. et al. Application of the extraction-pyrolysis method in formation of bioactive coatings. Theor Found Chem Eng 50, 483–489 (2016). https://doi.org/10.1134/S0040579516040199

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579516040199

Keywords

Navigation