Skip to main content
Log in

Estimating the parameters of chemical kinetics equations from the partial information about their solution

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The inverse problem of identifying the parameters of sets of ordinary differential equations using experimental measurements of three functions that correspond to some components in the vector solution of a set is considered. A private case that is important for applications of chemical and biochemical kinetics when reduced equations linearly depend on the combinations of initial unknown parameters has been studied. An analysis and the numerical results are presented for two types of sets of chemical kinetics equations, such as the Lotka–Volterra model that describes the coexistence of a predator and a prey and the chemical kinetics equations that model enzyme catalysts reactions, including the Michaelis–Menten equations. The search for unknown parameters is confined to the problem of minimizing a quadratic function. In this case, the reduced differential equations of systems are used instead of their vector solutions, which are unknown in most cases. The cases of both stable and unstable search for unknown parameters are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shatalov, M. and Fedotov, I., On identification of dynamical system parameters from experimental data, Research Group Math. Inequal. Appl. (Melbourne), 2007, vol. 10, no. 2, pp. 106.

    Google Scholar 

  2. Shatalov, M., Fedotov, I., and Joubert, S., A novel method of interpolation and extrapolation of functions by a linear initial value problem, Proc. TIME Conf., Buffelspoort, South Africa, 2008, p. 93.

    Google Scholar 

  3. Shatalov, M., Greef, J., Joubert, S., and Fedotov, I., Parametric identification of the model with one predator and two preys species, Proc. TIME Conf., Buffelspoort, South Africa, 2008, p. 101.

    Google Scholar 

  4. Shatalov, M.Yu., Fedotov, S.I., and Shatalov, Yu.M., New Methods of determination of kinetic parameters of theoretical models from experimental data, Theor. Found. Chem. Eng., 2013, vol. 47, no. 3, pp. 207–216.

    Article  CAS  Google Scholar 

  5. Bazykin, A.D., Nelineinaya dinamika vzaimodeistvuyushchikh populyatsii (Nonlinear Dynamics of Interacting Populations), Moscow: RKhD, 2003

    Google Scholar 

  6. Zhabotinskii, A.M., Kontsentratsionye avtokolebaniya (Concentration Self-Oscillations), Moscow: Nauka, 1974

    Google Scholar 

  7. Chen, W., Niepel, M., and Sorger, P., Classic and contemporary approaches to modeling biochemical reactions, Genes Dev., 2010, vol. 24, pp. 1861–1875.

    Article  CAS  Google Scholar 

  8. Gorskii, V.G., Planirovanie kineticheskikh eksperimentov (Design of Kinetic Experiments), Moscow: Nauka, 1984

    Google Scholar 

  9. Polyanin, A.D., Vyaz’mina, E.A., and Dil’man, V.V., New methods for processing experimental data: applicability tests for empitical formulas, Theor. Found. Chem. Eng., 2008, vol. 42, pp. 354–365.

    Article  CAS  Google Scholar 

  10. Polyanin, A.D., Vyaz’mina, E.A., and Dil’man, V.V., Applicability tests for empirical formulas: Analysis of turbulent flows and general comments, Theor. Found. Chem. Eng., 2009, vol. 43, pp. 119–128.

    Article  CAS  Google Scholar 

  11. Varfolomeev, S.D. and Gurevich, K.G., Biokinetika (Biokinetics), Moscow: Fair Press, 1999

    Google Scholar 

  12. Perez-Bendito, D., Silva, M., Mayer, J., and Chalmers, R., Kinetic Methods in Analytical Chemistry, Chichester, UK: Ellis Horwood, 1988

    Google Scholar 

  13. Hannah, M. and Moate, P., Fitting Michaelis-Menten Directly to Substrate Concentration Data, Dept. of Primary Industries, Victoria, 2011 http://www. vsnicouk/files/events/gsconf2011/hannahm/pdf

    Google Scholar 

  14. Dowd, J. and Riggs, D., A comparison of estimates of Michaelis–Menten kinetic constants from various linear transformations, J. Biol. Chem., 1965, vol. 240, p. 863.

    CAS  Google Scholar 

  15. Atkins, G. and Nimmo, I., A comparison of seven methods for fitting of Michaelis–Menten equation, Biochem. J., 1975, vol. 149, p. 775.

    Article  CAS  Google Scholar 

  16. Atkins, G. and Nimmo, I., Current trends in the estimation of Michaelis–Menten parameters, Anal. Biochem., 1980, vol. 104, p. 1.

    Article  CAS  Google Scholar 

  17. Winkel, B., Parameters estimates in differential equation models for chemical kinetics, Int. J. Math. Educ. Sci. Technol., 2011, vol. 42, p. 37.

    Article  Google Scholar 

  18. Eisental, R. and Cornish-Bowden, A., The direct linear plot: a new graphical procedure for estimation of enzyme kinetic parameters, Biochem. J., 1974, vol. 139, p. 715.

    Article  Google Scholar 

  19. Cornish-Bowden, A. and Eisental, R., Statistical considerations in the estimation of enzyme kinetic parameters by the direct plot and other methods, Biochem. J., 1974, vol. 139, p. 721.

    Article  CAS  Google Scholar 

  20. Wilkinson, G., Statistical estimations in enzyme kinetics, Biochem. J., 1961, vol. 80, p. 324.

    Article  CAS  Google Scholar 

  21. Currie, D., Estimating Michaelis–Menten parameters: bias, variance and experimental design, Biometrics, 1982, vol. 38, p. 907.

    Article  Google Scholar 

  22. Spivak, S.I. and Gorskii, V.G., Nonuniqueness of the problem of kinetic constant reconstruction, Dokl. Akad. Nauk SSSR, 1981, vol. 257, no. 2, pp. 412.

    CAS  Google Scholar 

  23. Gorskii, V.G. and Spivak, S.I., Degree of completeness of experimental information in the reconstruction of kinetic and equilibrium constants of complex chemical reactions, in Matematicheskie metody khimicheskoi termodinamiki (Mathematical Methods of Chemical Thermodynamics), Novosibirsk, 1982, p. 139.

    Google Scholar 

  24. Spivak, S.I. and Gorskii, V.G., On completeness of accessible kinetic measurements in the determination of rate constants of complex chemical reaction, Khim. Fiz., 1982, no. 2, p. 237.

    Google Scholar 

  25. Spivak, S., Inverse problems of chemical kinetics and thermodynamics, Syst. Anal. Modell. Simul., 1995, vol. 18–19, p. 107.

    Google Scholar 

  26. Asadulin, R.N., Svinolupov, S.I., and Spivak, S.I., Elimination of intermediqte substance concentration in models of unsteady-state chemical kinetics, Kinet. Katal., 1991, vol. 32, no. 5, pp. 1229.

    Google Scholar 

  27. Gorskii, V.G. and Zeinalov, M.Z., Mathematical modeling of stationary reaction kinetics in the quasi-equilibrium and quasi-stationary approximation, Theor. Found. Chem. Eng., 2003, vol. 37, pp. 184–190.

    Article  CAS  Google Scholar 

  28. Gorskii, V.G. and Zeinalov, M.Z., Mathematical modeling of stationary kinetics of a composite reaction with a quasi-stationary steps, Theor. Found. Chem. Eng., 2003, vol. 37, pp. 77–81.

    Article  CAS  Google Scholar 

  29. Gorskii, V.G., Zeinalov, M.Z., and Gadzhibalaeva, Z.M., Generalized algorithm of mathematical modeling of chemical kinetics in the quasiequilibrium and quasi-steady-state approximations, Theor. Found. Chem. Eng., 2006, vol. 40, pp. 617–625.

    Article  CAS  Google Scholar 

  30. Gutenkunst, R., Waterfal, J., Casey, F., Brown, K., Meyers, C., and Sethna, J., Universally sloppy parameter sensitivities in biological models, PLoS Comput. Biol., 2007, vol. 3, p. 1871.

    Article  CAS  Google Scholar 

  31. Waterfal, J., Universality in multiparameter fitting: sloppy models, Ph.D. Thesis, Ithaca, N.Y.: Cornel Univ., 2008

    Google Scholar 

  32. Kramling, A. and Saez-Rodriges, J., System biology: an engineering perspective, J. Biotechnol., 2007, vol. 129, p. 329.

    Article  Google Scholar 

  33. Englezos, P. and Kalogerakis, K., Applied Parameter Estimation for Chemical Engineers, New York: Marcel Dekker, 2001

    Google Scholar 

  34. Stechkin, S.B., The best linear operator approximation, Mat. Zametki, 1967, vol. 1, no. 2, pp. 83.

    Google Scholar 

  35. Tikhomirov, V.M., A. N. Kolmogorov and theory of approximations, Usp. Mat. Nauk, 1989, vol. 44, no. 1, pp. 83.

    Google Scholar 

  36. Fikhtengolts, G., Kurs differentsial’nogo i integral’nogo ischisleniya (Course of Differential and Integral Calculus), Moscow: Nauka, 1969, vol. 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Shatalov.

Additional information

Original Russian Text © M.Yu. Shatalov, A.S. Demidov, I.A. Fedotov, 2016, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2016, Vol. 50, No. 2, pp. 153–162.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shatalov, M.Y., Demidov, A.S. & Fedotov, I.A. Estimating the parameters of chemical kinetics equations from the partial information about their solution. Theor Found Chem Eng 50, 148–157 (2016). https://doi.org/10.1134/S0040579516020111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579516020111

Keywords

Navigation