Skip to main content
Log in

Concentration dependences of the isobaric heat capacity of binary solutions and its contribution to thermal calculations

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The concentration dependences of the isobaric molar heat capacity of binary homogeneous nonelectrolyte systems have been analyzed. The temperature effect on the isobaric molar heat capacity has been evaluated. The possibility of replacing the isobaric heat capacity of nonideal binary mixtures with additive values when calculating the heat balances of distillation columns has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karapet’yants, M.Kh., Khimicheskaya termodinamika (Chemical Thermodynamics), Moscow: Khimiya, 1975, 3rd ed.

    Google Scholar 

  2. Wilhelm, E., What you always wanted to know about heat capacities, but were afraid to ask, J. Solution Chem., 2010, vol. 39, pp. 1777–18118.

    Article  CAS  Google Scholar 

  3. Oscarson, J.L., Rowley, R.L., Wilding, W.V., and Izatt, R.M., Industrial need for accurate thermophysical data and for reliable prediction methods, J. Therm. Anal. Calorim., 2008, vol. 92, pp. 465–470.

    Article  CAS  Google Scholar 

  4. Obshchii kurs protsessov i apparatov khimicheskoi tekhnologii (Chemical Engineering Science), Ainshtein, V.G., Ed., Moscow, 2014.

  5. Bagaturov, S.A., Osnovy teorii i rascheta peregonki i rektifikatsii (Fundamentals of the Theory and Design of Simple and Fractional Distillation), Moscow: Khimiya, 1974, 3rd ed.

    Google Scholar 

  6. Piekarski, H., Piekarska, A., and Kubalczyk, K., Volumes, heat capacities, and compressibilities of the mixtures of acetonitrile and 2-methoxyethanol, J. Chem. Thermodyn., 2011, vol. 43, pp. 1375–1380.

    Article  CAS  Google Scholar 

  7. Hadded, N. and Bouanz, M., Excess molar heat capacity of isobutyric acid–water binary liquid mixtures near and far away from the critical temperature, J. Mol. Liq., 2007, vol. 130, pp. 11–14.

    Article  CAS  Google Scholar 

  8. Sharma, V.K. and Rohilla, A., Excess heat capacities of 1-methyl pyrrolidin-2-one and pyridine or picolines mixtures, Thermochim. Acta, 2013, vol. 568, pp. 140–147.

    Article  CAS  Google Scholar 

  9. Sharma, V.K. and Kataria, J., Topological investigations of excess heat capacities of binary liquid mixtures containing lactams and cycloalkanone, J. Mol. Liq., 2013, vol. 188, pp. 210–221.

    Article  CAS  Google Scholar 

  10. Vilaseca, O., Llovell, F., Yustos, J., Marcos, R.M., and Vega, L.F., Phase equilibria, surface tensions and heat capacities of hydrofluorocarbons and their mixtures including the critical region, J. Supercrit. Fluids, 2010, vol. 55, pp. 755–768.

    Article  CAS  Google Scholar 

  11. Lashkarbolooki, M., Hezave, A.Z., and Ayatollahi, S., Artificial neural network as an applicable tool to predict the binary heat capacity of mixtures containing ionic liquids, Fluid Phase Equilib., 2012, vol. 324, pp. 102–107.

    Article  CAS  Google Scholar 

  12. Hu, Hui-Chun, Soriano, A.N., Leron, R.B., and Li Meng-Hui, Molar heat capacity of four aqueous ionic liquid mixtures, Thermochim. Acta, 2011, vol. 519, pp. 44–49.

    Article  CAS  Google Scholar 

  13. Kolker, A.M. and Safonova, L.P., Molar heat capacities of the (water + acetonitrile) mixtures at t = (283.15, 298.15, 313.15, and 328.15) K, J. Chem. Thermodyn., 2010, vol. 42, p. 1209.

    Article  CAS  Google Scholar 

  14. Leron, R.B. and Li Meng-Hui, Molar heat capacities of choline chloride-based deep eutectic solvents and their binary mixtures with water, Thermochim. Acta, 2012, vol. 530, pp. 52–57.

    Article  CAS  Google Scholar 

  15. Yu Ya-Hung, Soriano, A.N., and Li Meng-Hui, Heat capacity and electrical conductivity of aqueous mixtures of [Bmim][BF4] and [Bmim][PF6], J. Taiwan Inst. Chem. Eng., 2009, vol. 40, pp. 205–212.

    Article  CAS  Google Scholar 

  16. Piekarski, H., Pietrzak, A., and Waliszewski, D., Heat capacities and volumes of nitromethane-methanol and propylene carbonate–methanol mixtures at 298.15 K, J. Mol. Liq., 2005, vol. 121, pp. 41–45.

    Article  CAS  Google Scholar 

  17. Belousov, V.P. and Panov, M.Yu., Termodinamika vodnykh rastvorov neelektrolitov (Thermodynamics of Aqueous Solutions of Nonelectrolytes), Leningrad: Khimiya, 1983.

    Google Scholar 

  18. Raeva, V.M. and Frolkova, A.K., Concentration dependences of the excess molar heat capacities of binary solutions, Vestn. Mosk. Inst. Tonkoi Khim. Tekhnol., 2009, vol. 4, no. 4, pp. 31–39.

    Google Scholar 

  19. Pietrzak, A. and Piekarski, H., Molar heat capacities for {isomer of butanediol + methanol} as function of mixture composition and temperature, J. Chem. Thermodyn., 2014, vol. 79, pp. 171–177.

    Article  CAS  Google Scholar 

  20. Marcus, Y., Water structure enhancement in water-rich binary solvent mixtures. Part II. The excess partial molar heat capacity of the water, J. Mol. Liq., 2012, vol. 166, pp. 62–66.

    Article  CAS  Google Scholar 

  21. Dzida, M. and Goralski, P., Molar heat capacities for (2-methyl-2-butanol + heptane) mixtures and cyclopentanol at temperatures from (284 to 353) K, J. Chem. Thermodyn., 2009, vol. 41, pp. 402–413.

    Article  CAS  Google Scholar 

  22. Souto-Caride, S., Troncoso, J., Losada-Pérez, P., Peleteiro, J., Carballo, E., and Romani, L., Heat capacity anomalies of associated liquid-alkane mixtures near the liquid–liquid critical point, Chem. Phys., 2009, vol. 360, pp. 106–109.

    Article  CAS  Google Scholar 

  23. Belousov, V.P. Kutepov, A.M., Novoselov, N.P., and Shutin, V.I., Heat properties and mutual solubility of components in binary fissile systems, Khim. Prom., 1994, no. 8, pp. 24–32.

    Google Scholar 

  24. Belousov, V.P., Morachevskii, A.G., and Panov, M.Yu., Teplovye svoistva rastvorov neelektrolitov (Thermal Properties of Nonelectrolyte Solutions), Leningrad: Khimiya, 1981.

    Google Scholar 

  25. Belousov, V.P. and Morachevskii, A.G., Teploty smesheniya zhidkostei (Heats of Mixing of Liquids), Leningrad: Khimiya, 1970.

    Google Scholar 

  26. Serafimov, L.A., Frolkova, A.K., and Raeva, V.M., Analysis of the entire space of excess functions of mixing for binary solutions, Theor. Found. Chem. Eng., 1996, vol. 30, pp. 557–563.

    CAS  Google Scholar 

  27. Llano-Restrepo, M., Modeling and simulation of saline extractive distillation columns for the production of absolute ethanol, Comput. Chem. Eng., 2003, vol. 27, p. 527–549.

    Article  CAS  Google Scholar 

  28. Hashemi, N., Pazuki, G.R., Vossoughi, M., and Hemmatia, Sh., Modelling and simulation of saline extractive distillation columns for the production of pure ethanol with a new Gibbs energy model, Proc. 20th European Symp. on Computer Aided Process Engineering, Milan, 2010.

    Google Scholar 

  29. Checoni, R.F. and Volpe, P.L.O., Measurements solvents mixtures at 288.15 K to 303.15 K and atmospheric pressure, J. Solution Chem., 2010, vol. 39, pp. 259–276.

    Article  CAS  Google Scholar 

  30. Vega-Maza, D., Martin, M.C., Trusler, J.P.M., and Segovia, J.J., Heat capacities and densities of the binary mixtures containing ethanol, cyclohexane or 1-hexene at high pressures, J. Chem. Thermodyn., 2013, vol. 57, pp. 550–557.

    Article  CAS  Google Scholar 

  31. Langa, E., Palavra, A.M.F., Lourenco, M.J.V., de Castro, C.A.N., and Mainar, A.M., P, ρ, T and heat capacity measurements of (α-pinene + β-pinene) mixtures over the temperature range 283.15 K to 358.15 K and pressures up to 40 MPa: Experiments and modeling, J. Chem. Thermodyn., 2013, vol. 57, pp. 493–499.

    Article  CAS  Google Scholar 

  32. Vega-Maza, D., Segovia, J.J., Martín, M.C., Villamañán, R.M., and Villamañán, M.A., Thermodynamic properties of biofuels: Heat capacities of binary mixtures containing ethanol and hydrocarbons up to 20 MPa and the pure compounds using a new flow calorimeter, J. Chem. Thermodyn., 2011, vol. 43, pp. 1893–1896.

    Article  CAS  Google Scholar 

  33. Torin-Ollarves, G.A., Segovia, J.J., Martin, M.C., and Villamañán, M.A., Thermodynamic characterization of the mixture (1-butanol + iso-octane): Densities, viscosities, and isobaric heat capacities at high pressures, J. Chem. Thermodyn., 2012, vol. 44, pp. 75–83.

    Article  CAS  Google Scholar 

  34. Torin-Ollarves, G.A., Martin, M.C., Chamorro, C.R., and Segovia, J.J., Densities, viscosities, and isobaric heat capacities of the system (1-butanol + cyclohexane) at high pressures, J. Chem. Thermodyn., 2014, vol. 74, pp. 153–160.

    Article  CAS  Google Scholar 

  35. Yusuf Akhmed El’sadig Mokhamed, Development of methods of calculation of the heat of evaporation of binary hydrocarbon mixtures, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Moscow: Moscow Inst. of Fine Chemical Technology, 2011.

    Google Scholar 

  36. Raeva, V.M., Heats of evaporation of binary mixtures, Vestn. Mosk. Inst. Tonkoi Khim. Tekhnol., 2013, vol. 8, no. 1, pp. 43–50.

    Google Scholar 

  37. Serafimov, L.A. and Raeva, V.M., Transformations of composition–property relationships binary homogeneous mixtures, Vestn. Mosk. Inst. Tonkoi Khim. Tekhnol., 2013, vol. 8, no. 2, pp. 39–44.

    CAS  Google Scholar 

  38. Serafimov, L.A., Frolkova, A.K., and Raeva, V.M., Thermodynamic analysis of the NRTL model using the concentration dependences of excess functions, Theor. Found. Chem. Eng., 2002, vol. 36, pp. 353–359.

    Article  CAS  Google Scholar 

  39. Raeva, V.M., Klyuchikov, S.K., Frolkova, A.K., and Serafimov, L.A., Limitations of the Wilson model for describing excess molar heat capacities of binary solutions, Russ. J. Phys. Chem. A 2009, vol. 83, pp. 775–784.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Raeva.

Additional information

Original Russian Text © V.M. Raeva, A.K. Frolkova, B.A. Arutyunov, L.A. Serafimov, 2015, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2015, Vol. 49, No. 5, pp. 574–581.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raeva, V.M., Frolkova, A.K., Arutyunov, B.A. et al. Concentration dependences of the isobaric heat capacity of binary solutions and its contribution to thermal calculations. Theor Found Chem Eng 49, 667–675 (2015). https://doi.org/10.1134/S0040579515050255

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579515050255

Keywords

Navigation