Skip to main content
Log in

A study of the deep-bed filtration of a suspension of ash particles

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A new experimental approach to estimating the attachment and detachment rate coefficients of suspended particles in a filtering bed has been proposed. These coefficients are determined using the deepbed filtration of clarified power station water containing ash particles as an example to show how they could be used to calculate the contaminant-retention capacity of a filtering bed. The effect of the direction and velocity of filtration on the decontamination efficiency and contaminant-retention capacity of a filtering bed has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belichenko, Yu.P., Gordeev, L.S., and Komissarov, Yu.A., Zamknutye sistemy vodoobespecheniya khimicheskikh proizvodstv (Closed-Circuit Water Supply Systems in the Chemical Industry), Moscow: Khimiya, 1996.

    Google Scholar 

  2. Sterman, L.S. and Pokrovskii, V.N., Fizicheskie i khimicheskie metody obrabotki vody na TES (Physical and Chemical Methods of Water Treatment at Thermal Power Stations), Moscow: Energoatomizdat, 1991.

    Google Scholar 

  3. Iwasaki, T., Some notes on sand filtration, J. Am. Water Works Assn., 1937, vol. 29, no. 10, p. 1591.

    CAS  Google Scholar 

  4. Ives, K.J., Rational design of filters, Proc. Inst. Civ. Eng., 1960, vol. 15, no. 2, p. 189.

    Article  Google Scholar 

  5. Mints, D.M., Kinetics of the filtration of dilute suspensions through water treatment filters, Dokl. Akad. Nauk SSSR, 1951, vol. 78, no. 2, p. 315.

    CAS  Google Scholar 

  6. Gitis, V., Rubinstein, I., Livshits, M., and Ziskind, G., Deep-bed filtration model with multistage deposition kinetics, Chem. Eng. J., 2010, vol. 163, no. 1, p. 78.

    Article  CAS  Google Scholar 

  7. Yao, K.M., Habibian, M.T., and O’Melia, C.R., Water and waste water filtration: Concepts and applications, Environ. Sci. Technol., 1971, vol. 5, no. 11, p. 1105.

    Article  CAS  Google Scholar 

  8. Kochmarskii, V.Z. and Demchik, I.I., Statistical interpretation of Mintz’s mathematical model of filtration, Teor. Osn. Khim. Tekhnol., 1989, vol. 23, no. 3, p. 405.

    CAS  Google Scholar 

  9. Polyakov, Yu.S., Kazenin, D.A., Maksimov, E.D., and Polyakov, S.V., Kinetic model of depth filtration with reversible adsorption, Theor. Found. Chem. Eng., 2003, vol. 37, no. 5, p. 439.

    Article  CAS  Google Scholar 

  10. Polyakov, Yu.S. and Kazenin, D.A., Membrane filtration with reversible adsorption: hollow fiber membranes as collectors of colloidal particles, Theor. Found. Chem. Eng., 2005, vol, 39, no. 2, p. 118.

    Article  CAS  Google Scholar 

  11. Dmitriev, E.A., Trushin, A.M., Kuznetsova, I.K., and Tsvetnov, A.V., Mathematical modeling of the integrated microfiltration–desorption process at the microfiltration stage, Theor. Found. Chem. Eng., 2006, vol. 40, no. 5, p. 447.

    Article  CAS  Google Scholar 

  12. Dyachenko, E.N. and Dyachenko, N.N., Numerical modeling of filtration of liquid through layer of bulk filter, Theor. Found. Chem. Eng., 2013, vol. 47, no. 3, p. 262.

    Article  CAS  Google Scholar 

  13. Jegatheesan, V. and Vigneswaran, S., Deep bed filtration: mathematical models and observations, Crit. Rev. Environ. Sci. Technol., 2005, vol. 35, no. 6, p. 515.

    Article  CAS  Google Scholar 

  14. Zamani, A. and Maini, B., Flow of dispersed particles through porous media—deep bed filtration, J. Pet. Sci. Eng., 2009, vol. 69, nos. 1–2, p. 71.

    Article  CAS  Google Scholar 

  15. Sokovnin, O.M. and Zagoskin, S.N., Kinetics of sorption of particles on granular filter, Theor. Found. Chem. Eng., 2004, vol. 38, no. 4, p. 399.

    Article  CAS  Google Scholar 

  16. Sokovnin, O.M., Zykin, Yu.V., and Zagoskin, S.N., Rationalization of the thermal balances of multifuel thermal power stations, Elektr. Stantsii, 2003, no. 8, p. 19.

    Google Scholar 

  17. GOST (State Standard) 9757-90: Artificial Porous Gravel, Crushed Stone and Sand. Specifications, 2007.

  18. Lur’e, Yu.Yu., Analiticheskaya khimiya promyshlennykh stochnykh vod (Analytical Chemistry of Industrial Wastewater), Moscow: Khimiya, 1989.

    Google Scholar 

  19. Nguyen, N.T., MS Thesis, Saskatoon, Canada: Univ. of Saskatchewan, 2012.

    Google Scholar 

  20. Venetsianov, E.V. and Senyavin, M.M., Clarification filtration of suspensions: Quantitative description and calculation methods, Teor. Osn. Khim. Tekhnol., 1980, vol. 14, no. 3, p. 405.

    Google Scholar 

  21. Makhmud, A.S.M., Cand. Sci. (Eng.) Dissertation, Bishkek, 2012.

    Google Scholar 

  22. Ayukaev, R.I. and Mel’tser, V.Z., Proizvodstvo i primenenie fil’truyushchikh materialov dlya ochistki vody: Spravochnoe posobie (Production and Use of Filter Materials for Water Cleaning: A Handbook), Leningrad: Stroiizdat, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Sokovnin.

Additional information

Original Russian Text © O.M. Sokovnin, N.V. Zagoskina, S.N. Zagoskin, 2015, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2015, Vol. 49, No. 5, pp. 595–605.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokovnin, O.M., Zagoskina, N.V. & Zagoskin, S.N. A study of the deep-bed filtration of a suspension of ash particles. Theor Found Chem Eng 49, 688–698 (2015). https://doi.org/10.1134/S0040579515040363

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579515040363

Keywords

Navigation