Skip to main content
Log in

Simulation of a distillation column with nonequimolar mass transfer in the production of methylamines

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Theoretically substantiated expressions are suggested for estimating the tray efficiency in distillation with nonequimolar mass transfer. Binary interaction parameters are presented for the UNIQUAC calculation of the vapor-liquid equilibrium in the six-component system consisting of water, methanol, ammonia, monomethylamine, dimethylamine, and trimethylamine. An approach to simulating the operation of tray columns with nonequimolar mass transfer is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Egoshi, N., Kawakami, H., and Asano, K., Heat and mass transfer model approach to prediction of separation performance of cryogenic air separation plant by packed columns with structured packing, J. Chem. Eng. Jpn., 2001, vol. 34, pp. 22–29.

    Article  CAS  Google Scholar 

  2. Shchelkunov, B.I. and Ul’yanov, B.A., Gidravlika i massoobmen v tarel’chatykh rektifikatsionnykh apparatakh (Hydraulics and Mass Transfer in Tray Distillation Apparatuses), Irkutsk: Irkutsk. Gos. Tekh. Univ., 1997.

    Google Scholar 

  3. Elizarov V.I., Elizarov D.V., Merzlyakov S.A., D’akonov S.G. Calculating the number of actual separation stages in mass transfer columns, Theor. Found. Chem. Eng., 2012, vol. 46, pp. 567–575.

    Article  CAS  Google Scholar 

  4. Laptev, A.G. and Danilov, V.A., Two-dimensional model of transfer processes on a bubble plate in multi-component rectification, J. Eng. Phys. Thermophys., 2003, vol. 76, pp. 819–825.

    Article  CAS  Google Scholar 

  5. Ulyanov, B.A., Semenov, I.A., and Kulov, N.N., Efficiency of mass transfer trays with allowance made for nonequimolar counterdiffusion, Theor. Found. Chem. Eng., 2011, vol. 45, pp. 575–580.

    Article  CAS  Google Scholar 

  6. Ul’yanov, B.A., Semenov, I.A., Sitnikov, D.N., and Fereferov, M.Yu., Plate efficiency in rectification of binary mixtures in the presence of an inert gas, Russ. J. Appl. Chem., 2011, vol. 84, pp. 2071–2075.

    Article  Google Scholar 

  7. Bal’chugov, A.V., Ul’yanov, B.A., and Kulov, N.N., Kinetics of chemisorption of ethylene by a chlorine solution, Theor. Found. Chem. Eng., 2006, vol. 40, pp. 594–597.

    Article  Google Scholar 

  8. Hughmark, G.A., Models for vapor-phase and liquid-phase mass transfer on distillation trays, AIChE J., 1971, vol. 17, pp. 1295–1299.

    Article  CAS  Google Scholar 

  9. Asano, K., Mass Transfer. From Fundamentals to Modern Industrial Applications, Weinheim: Wiley-VCH, 2006.

    Book  Google Scholar 

  10. Sherwood, T., Pigford, R., and Wilke, Ch., Mass Transfer, New York: McGraw-Hill, 1975.

    Google Scholar 

  11. Dubrovskii, D.A., Ul’yanov, B.A., and Semenov, I.A., Extractive rectification of methylamines, Vestn. Angar. Gos. Tekh. Akad, 2011, no. 5, pp. 81–82.

    Google Scholar 

  12. Walas, S.M., Phase Equilibria in Chemical Engineering, Boston: Butterworth, 1985.

    Google Scholar 

  13. Pape, D. and Roscher, T., Determination of the vapor-liquid equilibria in binary systems of mono-, di- or tri-methylamine with water or ammonia, Leuna Protoc., 1974, pp. 1251–1251.

    Google Scholar 

  14. Preuss, H., Determination of the vapor-liquid equilibria in 14 binary systems of the methylamine synthesis, Leuna Protoc., 1988, pp. 11301–11301.

    Google Scholar 

  15. Issoire, J. and Pfertzel, R., Thermophysical properties, Chim. Ind. Genie Chim., 1961, vol. 86, pp. 101–109.

    CAS  Google Scholar 

  16. Roscher, T. and Pape, D., Determination of the vapor-liquid equilibria in the systems trimethylamine-ammonia and dimethylamine-trimethylamine, Leuna Protoc., 1972, pp. 7311–7311.

    Google Scholar 

  17. Stuerz, H., Vapor pressures of monomethylamine-trimethylamine mixtures at 0°C, Leuna Protoc., 1972, pp. 7312–7312.

    Google Scholar 

  18. Hacker, I., Lucas, K., and Gelbin, D., The winning of trimethylamine by extractive distillation, Chem. Tech. Leipzig, 1964, vol. 16, pp. 75–80.

    CAS  Google Scholar 

  19. Niepel, W., Novak, J.P., Matous, J., and Sobr, J., Solubility of dimethylamine in water and in alcohols, Chem. Zvesti, 1972, vol. 26, pp. 44–48.

    CAS  Google Scholar 

  20. Kogan, V.B., Fridman, V.M., and Kafarov, V.V., Ravnovesie mezhdu zhidkost’yu i parom: Spravochnoe posobie (Liquid-Vapor Equilibrium: A Handbook), Moscow: Nauka, 1966.

    Google Scholar 

  21. Schafer, D., Vogt, M., Perez-Salado, Kamps, A.P.-S., and Maurer, G., Solubility of ammonia in liquid mixtures of (water + methanol), Fluid Phase Equilib., 2007, vol. 261, pp. 306–312.

    Article  Google Scholar 

  22. Qiu, Z., Gao, D., and Yu, S., Study on the isobaric vapor-liquid equilibrium for methylamines and H2O multicomponent systems, Gaoxiao Huaxue Gongcheng Xuebao, 2004, vol. 18, pp. 542–546.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Semenov.

Additional information

Original Russian Text © I.A. Semenov, B.A. Ul’yanov, D.A. Dubrovskii, N.N. Kulov, 2014, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2014, Vol. 48, No. 5, pp. 587–593.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, I.A., Ul’yanov, B.A., Dubrovskii, D.A. et al. Simulation of a distillation column with nonequimolar mass transfer in the production of methylamines. Theor Found Chem Eng 48, 644–649 (2014). https://doi.org/10.1134/S0040579514050236

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579514050236

Keywords

Navigation