Skip to main content
Log in

Determining the velocity of the hindered motion of spherical gas particles through liquid in a gravity field

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A mathematical model of the hindered motion of spherical gas particles in a gravity filed on the basis of the variational principle of the minimum intensity of energy dissipation during the hindered motion of dispersed particles with consideration for dispersed phase fraction fluctuations in a bed is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trushin, A.M., Dmitriev, E.A., and Akimov, V.V., Mechanics of the formation of microbubbles in gas dispersion through the pores of microfiltration membranes, Theor. Found. Chem. Eng., 2011, vol. 45, p. 26.

    Article  CAS  Google Scholar 

  2. Kukizaki, M., Microbubble formation using asymmetric Shirasu-porous-glass (SPG) membranes and porous ceramic membranes — a comparative study, Colloids Surf., A, 2009, vol. 340, p. 20.

    Article  CAS  Google Scholar 

  3. Akimov, V.V., Dmitriev, E.A., and Trushin, A.M., Mass transfer in the chemisorption of CO2 in a membrane microbubble apparatus, Theor. Found. Chem. Eng., 2011, vol. 45, p. 811.

    Article  CAS  Google Scholar 

  4. Tasaki, T., Wada, T., Fujimoto, K., Kai, S., Ohe, K., Oshima, T., Baba, Y., and Kukizaki, M., Degradation of methyl orange using short-wavelength UV irradiation with oxygen microbubbles, J. Hazard. Mater., 2009, vol. 162, p. 1103.

    Article  CAS  Google Scholar 

  5. Coulson, J.M., Richardson, J.F., Backhurst, J.R., and Harker, J.H., Coulson and Richardson’s Chemical Engineering, vol. 2: Particle Technology and Separation Processes,. Oxford: Butterworth-Heinemann, 1991, 4th ed.

    Google Scholar 

  6. Shvydkii, V.S., Yaroshenko, Yu.G., Gordon, Ya.M., Shavrin, V.S., and Noskov, A.S., Mekhanika zhidkosti i gaza (Liquid and Gas Mechanics), Moscow: Akademkniga, 2003.

    Google Scholar 

  7. Deryagin, B.V., Dukhin, S.S., and Rulev, N.N., Mikroflotatsiya: Vodoochistka, obogashchenie (Microflotation: Water Cleaning, Enrichment), Moscow: Khimiya, 1986.

    Google Scholar 

  8. Rulev, N.N., Collective velocity of rising bubbles, Kolloidn. Zh., 1977, vol. 39, no. 1, p. 80.

    Google Scholar 

  9. Marrucci, G., Rising velocity of a swarm of spherical bubbles, Ind. Eng. Chem. Fundam., 1965, vol. 4, no. 2, p. 224.

    Article  CAS  Google Scholar 

  10. Giusti, A., Lucci, F., and Soldati, A., Influence of the lift force in direct numerical simulation of upward down-ward turbulent channel flow laden with surfactant contaminated microbubbles, Chem. Eng. Sci., 2005, vol. 60, p. 6176.

    Article  CAS  Google Scholar 

  11. Davidson, J.F. and Harrison, D., Fluidization, London: Academic, 1971.

    Google Scholar 

  12. Buevich, Yu.A. and Korneev, Yu.A., On interfacial mass- and heat transfer in a concentrated dispersion, Inzh.-Fiz. Zh., 1973, vol. 25, no. 4, p. 594.

    Google Scholar 

  13. Wallis, G.B., One-Dimensional Two-Phase Flow, New York: McGraw-Hill, 1969.

    Google Scholar 

  14. Zuber, N. and Findlay, J.A., Average volumetric concentration in two-phase flow systems, J. Heat Transfer, 1965, vol. 87, p. 453.

    Article  CAS  Google Scholar 

  15. Kutepov, A.M., Polyanin, A.D, Zapryanov, Z.D., Vyaz’min, A.V., and Kazenin, D.A., Khimicheskaya gidrodinamika (Chemical Fluid Dynamics), Moscow: Byuro Kvantum, 1996.

    Google Scholar 

  16. Haas, U., Schmidt-Traub, H., and Brauer, H., Umstromung kugelformiger blasen mit innerer zirkulation, Chem. Ing. Tech., 1972, vol. 44, p. 1060.

    Article  Google Scholar 

  17. Heat Exchanger Design Handbook, Schlünder, E.U., Ed., New York: Hemisphere, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Trushin.

Additional information

Original Russian Text © A.M. Trushin, E.A. Dmitriev, M.A. Nosyrev, T.A. Tarasova, I.K. Kuznetsova, 2013, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2013, Vol. 47, No. 4, pp. 434–440.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trushin, A.M., Dmitriev, E.A., Nosyrev, M.A. et al. Determining the velocity of the hindered motion of spherical gas particles through liquid in a gravity field. Theor Found Chem Eng 47, 368–374 (2013). https://doi.org/10.1134/S0040579513040337

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579513040337

Keywords

Navigation