Decomposition of three-dimensional linearized equations for Maxwell and Oldroyd viscoelastic fluids and their generalizations

  • A. D. Polyanin
  • A. V. Vyazmin


A new exact method of solving general three-dimensional nonstationary linearized equations for viscoelastic fluids is described based on breaking these equations down into several simpler equations. Formulas are given that make it possible to express the solution in the respective systems (consisting of four connected equations) by solving two independent equations. The most widespread rheological models of viscoelastic fluids are considered to illustrate the powerful capabilities of the proposed method. A new differential-difference model for a viscous fluid with a constant relaxation time is proposed that gives a finite disturbance propagation rate and is in good agreement with the Maxwell and Oldroyd differential models of viscoelastic fluids. The axial flows of viscoelastic fluids are studied, and solutions to certain hydrodynamic problems are given.


Stokes Equation Viscoelastic Fluid Viscoelastic Medium CTHEORETICAL Foundation Constant Relaxation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Planovskii, A.N. and Nikolaev, P.I., Protsessy i apparaty khimicheskoi i neftekhimicheskoi tekhnologii (Processes and Apparatuses in Chemical and Petrochemical Technology), Moscow: Khimiya, 1987, 3rd ed.Google Scholar
  2. 2.
    Protsessy i apparaty khimicheskoi tekhnologii. Yavleniya perenosa, makrokinetika, podobie, modelirovanie, proektirovanie. vol. 2. Mekhanicheskie i gidromekhanicheskie protsessy (Chemical Engineering Processes and Apparatuses: Transport Phenomena, Macrokinetics, Similarity, Modeling, and Designing, vol. 2: Mechanical and Hydromechanical Processes), Kutepov, A.M., Ed., Moscow: Logos, 2001.Google Scholar
  3. 3.
    Lamb, G., Gidrodinamika (Hydrodynamics), Moscow: Gos. Izd. Tekn.-Teor. Lit., 1947.Google Scholar
  4. 4.
    Loitsyanskii, L.G., Mekhanika zhidkosti i gaza (Fluid Mechanics), Moscow: Fizmatlit, 1987.Google Scholar
  5. 5.
    Batchelor, G.K., An Introduction to Fluid Dynamics, Cambridge: Cambridge Univ. Press, 1967.Google Scholar
  6. 6.
    Happel, J. and Brenner, H., Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, Englewood Cliffs, N.J.: Prentice Hall, 1965.Google Scholar
  7. 7.
    Polyanin, A.D., Kutepov, A.M., Vyazmin, A.V., and Kazenin, D.A., Hydrodynamics, Mass and Heat Transfer in Chemical Engineering, London: Taylor & Francis, 2002.Google Scholar
  8. 8.
    Galdi, G.P., An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, New York: Springer, 2011, 2nd ed.CrossRefGoogle Scholar
  9. 9.
    Drazin, P.G. and Riley, N., The Navier-Stokes Equations: A Classification of Flows and Exact Solutions, Cambridge: Cambridge Univ. Press, 2006.CrossRefGoogle Scholar
  10. 10.
    Polyanin, A.D. and Zaitsev, V.F., Handbook of Nonlinear Partial Differential Equations, Boca Raton, Fla.: Chapman & Hall/CRC, 2012, 2nd ed.Google Scholar
  11. 11.
    Aristov, S.N., Knyazev, D.V., and Polyanin, A.D., Exact solutions of the Navier-Stokes equations with the linear dependence of velocity components on two space variables, Theor. Found. Chem. Eng., 2009, vol. 43, no. 5, p. 642.CrossRefGoogle Scholar
  12. 12.
    Polyanin, A.D. and Aristov, S.N., A new method for constructing exact solutions to three-dimensional Navier-Stokes and Euler equations, Theor. Found. Chem. Eng., 2011, vol. 45, no. 6, p. 885.CrossRefGoogle Scholar
  13. 13.
    Polyanin, A.D. and Vyazmin, A.V., Decomposition and exact solutions of three-dimensional nonstationary linearized equations for a viscous fluid, Theor. Found. Chem. Eng., 2013, vol. 47, no. 2, p. 114.CrossRefGoogle Scholar
  14. 14.
    Astarita, G. and Marrucci, G., Principles of Non-Newtonian Fluid Mechanics, London: McGraw-Hill, 1974.Google Scholar
  15. 15.
    Harris, J., Rheology and Non-Newtonian Flow, London: Longman, 1977.Google Scholar
  16. 16.
    Macosko, C.W., Rheology: Principles, Measurements and Applications, New York: VCH, 1994.Google Scholar
  17. 17.
    Pukhnachev, V.V., Exact solutions of the equations of motion for an incompressible viscoelastic Maxwell medium, J. Appl. Mech. Tech. Phys., 2009, vol. 50, no. 2, p. 181.CrossRefGoogle Scholar
  18. 18.
    Lykov, A.V., Teplomassoobmen: spravochnik (Heat and Mass Transfer: A Handbook), Moscow: Energiya, 1978.Google Scholar
  19. 19.
    Bai, C. and Lavine, A.S., On hyperbolic heat conduction and the second law of thermodynamics, J. Heat Transfer, 1995, vol. 117, p. 256.CrossRefGoogle Scholar
  20. 20.
    Wang, L., Solution structure of hyperbolic heat-conduction equation, Int. J. Heat Mass Transfer, 2000, vol. 43, p. 365.CrossRefGoogle Scholar
  21. 21.
    Lewandowska, M. and Malinowski, L., An analytical solution of the hyperbolic heat conduction equation for the case of a finite medium symmetrically heated on both sides, Int. Commun. Heat Mass Transfer, 2006, vol. 33, p. 61.CrossRefGoogle Scholar
  22. 22.
    Polyanin, A.D., Vyaz’min, A.V., Zhurov, A.I., and Kazenin, D.A., Spravochnik po tochnym resheniyam uravnenii teplo- i massoperenosa (Handbook of Exact Solutions to the Equations of Heat and Mass Transfer), Moscow: Faktorial, 1998.Google Scholar
  23. 23.
    Polyanin, A.D. and Vyazmin, A.V., Differential-difference heat-conduction and diffusion models and equations with a finite relaxation time, Theor. Found. Chem. Eng., 2013, vol. 47, no. 3, p. 217.CrossRefGoogle Scholar
  24. 24.
    Brenier, Y., Natalini, R., and Puel, M., On a relaxation approximation of the incompressible Navier-Stokes equations, Proc. Am. Math. Soc., 2003, vol. 132, no. 4, p. 1021.CrossRefGoogle Scholar
  25. 25.
    Paicu, M. and Raugel, G., Une perturbation hyperbolique des equations de Navier-Stokes, ESAIM Proc., 2007, vol. 21, p. 65.CrossRefGoogle Scholar
  26. 26.
    Racke, R. and Saal, J., Global Solutions to Hyperbolic Navier-Stokes Equations, Konstanzer Schriften in Mathematik, no. 268, Konstanz: Univ. of Konstanz, 2010.Google Scholar
  27. 27.
    Racke, R. and Saal, J., Hyperbolic Navier-Stokes equations I, II, Evol. Equations Control Theory, 2012, vol. 1, no. 1, p. 195.CrossRefGoogle Scholar
  28. 28.
    Schöwe, A., A Quasilinear Delayed Hyperbolic NavierStokes System: Global Solution, Asymptotics and Relaxation Limit, Konstanzer Schriften in Mathematik, no. 302, Konstanz: Univ. of Konstanz, 2012.Google Scholar
  29. 29.
    Il’yushin, A.A., Mekhanika sploshnoi sredy (Continuous Medium Mechanics), Moscow: Mosk. Gos. Univ., 1971.Google Scholar
  30. 30.
    Sedov, L.I., Mekhanika sploshnoi sredy (Continuous Medium Mechanics), Moscow: Nauka, 1970.Google Scholar
  31. 31.
    Wilkinson, W.L., Non-Newtonian Fluids, Oxford: Pergamon, 1960.Google Scholar
  32. 32.
    Böhme, G., Strömungsmechanik nicht-newtonscher Fluide, Stuttgart: B.G. Teubner, 1981.CrossRefGoogle Scholar
  33. 33.
    Joseph, D.D., Fluid Dynamics of Viscoelastic Liquids, Appl. Math. Sciences, vol. 84, New York: Springer, 1990.Google Scholar
  34. 34.
    Rajagopal, K.R., Mechanics of non-Newtonian fluids, in Recent Developments in Theoretical Fluid Mechanics, Pitman Research Notes in Mathematics Series, vol. 291, Harlow: Longman, 1993, p. 129.Google Scholar
  35. 35.
    Oldroyd, J.G., Non-Newtonian flow of liquids and solids, Rheology: Theory and Applications, Eirich, F.R., Ed., New York: Academic, 1956, vol. 1, ch. 16, p. 653.Google Scholar
  36. 36.
    Christov, I.C. and Jordan, P.M., Comments on: “Starting solutions for some unsteady unidirectional flows of a second grade fluid,” Int. J. Eng. Sci., 2012, vol. 51, p. 326.CrossRefGoogle Scholar
  37. 37.
    Araülo, G.M., Menezes, S.B., and Marinho, A.O., Existence of solutions for an Oldroyd model of viscoelastic fluids, Electronic J. Diff. Equations, 2009, no. 69, p. 1.Google Scholar
  38. 38.
    Carbonaro, B. and Rosso, F., Some remarks on a modified fluid dynamics equation, Rendiconti del Circolo Matematico di Palermo, 1981, vol. 30, no. 1, p. 111.CrossRefGoogle Scholar
  39. 39.
    Khan, M., Malik, R., Fetecau, C., and Fetecau, C., Exact solutions for the unsteady flow of a Burgers’ fluid between two sidewalls perpendicular to the plate, Chem. Eng. Commun., 2010, vol. 197, no. 11, p. 1367.CrossRefGoogle Scholar
  40. 40.
    Jamil, M., First problem of Stokes for generalized Burgers’ fluids, ISRN Math. Phys., 2012, article ID 831063.Google Scholar
  41. 41.
    Khan, M., The Rayleigh-Stokes problem for an edge in a viscoelastic fluid with a fractional derivative model, Nonlinear Anal. Real World Appl., 2009, vol. 10, no. 5, p. 3190.CrossRefGoogle Scholar
  42. 42.
    Jamil, M., Khan, N.A., and Zafar, A.A., Translational flows of an Oldroyd-B fluid with fractional derivatives, Comput. Math. Appl., 2011, vol. 62, p. 1540.CrossRefGoogle Scholar
  43. 43.
    Christov, I.C., Stokes’ first problem for some non-Newtonian fluids: results and mistakes, Mech. Res. Commun., 2010, vol. 37, no. 8, p. 717.CrossRefGoogle Scholar
  44. 44.
    Orlov, V.P., On the Oldroid model of a viscoelastic fluid, Funct. Anal. Its Appl., 1999, vol. 33, no. 1., p. 72.CrossRefGoogle Scholar
  45. 45.
    Agranovich, Yu.Ya. and Sobolevskii, P.E., Flow of a nonlinear viscoelastic fluid, Dokl. Akad. Nauk SSSR, 1990, vol. 314, no. 3, p. 231.Google Scholar
  46. 46.
    Polyanin, A.D. and Manzhirov, A.V., Handbook of Integral Equations, Boca Raton, Fla.: Chapman & Hall/CRC, 2008, 2nd ed.CrossRefGoogle Scholar
  47. 47.
    Joseph, D.D., Helmholtz decomposition coupling rotational to irrotational flow of a viscous fluid, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 39, p. 14272.CrossRefGoogle Scholar
  48. 48.
    Polyanin, A.D., Handbook of Linear Partial Differential Equations for Engineers and Scientists, Boca Raton, Fla.: Chapman & Hall/CRC, 2002.Google Scholar
  49. 49.
    Shahid, N., Rana, M., and Siddique, I., Exact solution for motion of an Oldroyd-B fluid over an infinite flat plate that applies an oscillating shear stress to the fluid, Bound. Value Probl., 2012, vol. 2012, article 48.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Ishlinskii Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia
  2. 2.Environmental and Chemical Engineering InstituteMoscow State University of Mechanical EngineeringMoscowRussia

Personalised recommendations