Skip to main content
Log in

Surface coating by means of velocity shear instability in plasma

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

In this paper the effect of different parameters like magnetic field, homogenous direct-current electric field, shear scale length, temperature anisotropy, inhomogeneity in direct-current electric field and density gradient on ions velocity is discussed. A mathematical model for ions/micron size particles velocity is discussed and its values are calculated by taking experimental parameters and by applying computer technique. A model of plasma spray machine is also suggested, which contains plasma production with velocity shear instability in laboratory, powder injection and mass and momentum transfers between particles. The coating process by means of velocity shear instability in plasma has possibility to spray hard and arduous material (alloy) with minimum defects and maximum technical and economic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herman, H., Plasma Sprayed Coatings, Sci. Am., 1988, vol. 259, no. 3, p. 112.

    Article  CAS  Google Scholar 

  2. Gill, B.J. and Tucker, R.C., Plasma Spray Coating Processes, Mater. Sci. Technol., 1986, vol. 2, no. 3, p. 207.

    Article  CAS  Google Scholar 

  3. Chu, P.K., Chen, J.Y., Wang, L.P., and Huang, N., Plasma-Surface Modification of Biomaterials, Mater. Sci. Eng., 2002, vol. 36, no. 5, p. 143.

    Article  Google Scholar 

  4. Lugschieider, E., Barimani, C., Eckert, P., and Eritt, U., Modeling of the APS Plasma Spray, Comput. Mater. Sci., 1996, vol. 7, p. 109.

    Article  Google Scholar 

  5. Kurzweg, H., Heimann, R.B., Troczynski, T., and Waymann, M.L., Development of Plasma-Sprayed Bioceramic Coatings with Bond Coats Based on Titania and Zirconia, Biomaterials, 1998, vol. 19, p. 1507.

    Article  CAS  Google Scholar 

  6. Gruner, H., US Patent 4596718, 1986.

  7. Yilmaz, R., Kurt, A.O., Demir, A., and Tatli, Z., Effect of TiO2 on the Mechanical Properties of the Al2O3-TiO3 Plasma Sprayed Coating, J. Eur. Ceram. Soc., 2007, vol. 27, no. 2, p. 1319.

    Article  CAS  Google Scholar 

  8. Meletis, E.I., Nie, X., Wang, F.L., and Jiang, J.C., Electrolyte Plasma Processing for Cleaning and Metal-Coating of Steel Surfaces, Surf. Coat. Techn., 2002, vol. 150, no. 2, p. 246.

    Article  CAS  Google Scholar 

  9. Kaneko, T., Odaka, Y., Tada, E., and Hatakeyama, R., Generation and Control of Field Aligned Flow Velocity Shear in a Fully Ionized Collisionless Plasma., Rev. Sci. Instrum., 2002, vol. 73, p. 4218.

    Article  CAS  Google Scholar 

  10. Reynolds, E., Kaneko, T., Koepke, M., and Hatakeyama, R., Laser-Induced Fluorescence Characterization of Velocity Shear in a Magnetized Plasma Column Produced by a Segmented Q-Machine Source, Phys. Plasmas, 2005, vol. 12, p. 072103.

    Article  Google Scholar 

  11. Wong, A., Mamas, D., and Arnush, D., Negative Ion Plasmas, Phys. Fluids, 1975, vol. 18, p. 1489.

    Article  CAS  Google Scholar 

  12. Sato, N., Production of Negative Ion Plasmas in a Q Machine, Plasma Sources Sci. Technol., 1994, vol. 3, p. 395.

    Article  CAS  Google Scholar 

  13. Liu, X., Xiao, D., Wang, Y., and Zhang, Z., Monte Carlo Simulation of Electron Swarms Parameters in c-C4F8/CF4 Gas Mixtures, J. Shanghai Jiaotong Univ. (Sci.), 2008, vol. 13, p. 443.

    Article  Google Scholar 

  14. Tse, H., Man, H., and Yue, T., Effect of Magnetic Field on Plasma Control during CO2 Laser Welding, Opt. Laser Technol., 1999, vol. 31, p. 363.

    Article  Google Scholar 

  15. Tyagi, R., Srivastava, K.K., and Pandey, R., S, Non-Traditional Machining Process by Means of Velocity Shear Instability in Plasma, Surf. Eng. Appl. Electrochem., 2012, vol. 48, p. 64.

    Article  Google Scholar 

  16. Fauchais, P., Understanding Plasma Spraying, J. Phys. D: Appl. Phys., 2004, vol. 37, p. 86.

    Article  Google Scholar 

  17. Heimann, R.B., Plasma Spray Coating: Principles and Applications, Weinheim: VCH, 1996.

    Book  Google Scholar 

  18. Yoshida, T., Towards a New Era of Plasma Spray Processing, Pure Appl. Chem., 2006, vol. 78, p. 1093.

    Article  CAS  Google Scholar 

  19. Tyagi, R., Srivastava, K.K., and Pandey, R.S., Analysis of Electrostatic Ion-Cyclotron Instability Driven by Parallel Flow Velocity Shear, Surf. Eng. Appl. Electrochem., 2011, vol. 47, p. 370.

    Article  Google Scholar 

  20. Tse, H., Man, H., and Yue, T., Effect of Electric Field on Plasma Control during CO2 Laser Welding, Opt. Lasers Eng., 2000, vol. 33, p. 181.

    Article  Google Scholar 

  21. Ichiki, R., Kaneko, T., Hayashi, K., et al., Parallel-Velocity-Shear-Modified Drift Wave in Negative Ion Plasmas, Plasma Phys. Controlled Fusion, 2009, vol. 51, p. 035011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Tyagi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyagi, R.K., Pandey, R.S. & Kumar, A. Surface coating by means of velocity shear instability in plasma. Theor Found Chem Eng 46, 508–514 (2012). https://doi.org/10.1134/S0040579512050193

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579512050193

Keywords

Navigation