Skip to main content
Log in

CFD Simulation of hold-up and liquid circulation velocity in a membrane airlift reactor

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A two-dimensional model was used to consider circulation velocity and hold-up in a membrane bioreactor. Membranes were located and simulated (using computational fluid dynamics (CFD)) with three different distances of 5, 7 and 9 mm in an airlift reactor and compared with the results obtained from an airlift reactor without membrane. Gas hold-up in the riser decreased with increasing membrane layers distance. The liquid circulation velocity increased with increasing membrane layers distance. Further, liquid velocity increased bubble rising and decreased gas hold-up in the draft tube when membrane was not used in the draft tube. The simulated data were compared with the experimental data and good agreement was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blenke, H., Loop reactors, Adv. Biochem. Eng., 1979, vol. 13, p. 121.

    Google Scholar 

  2. Chisti, M.Y., Airlift Bioreactors, London: Elsevier, 1989.

    Google Scholar 

  3. Saez, A.E., Marquez, M.A., Roberts, G.W., and Carbonell, R.G., Hydrodynamic Model for Gas-Lift Reactors, AIChE J., 1998, vol. 44, no. 6, p. 1413.

    Article  CAS  Google Scholar 

  4. Brindle, K., Stephenson, T., and Semmens, M.J., Nitrification and Oxygen Utilization in a Membrane Aeration Bioreactor, J. Membr. Sci., 1998, vol. 144, nos. 1–2, p. 197.

    Article  CAS  Google Scholar 

  5. Giaveno, A., Lavalle, L., Chiacchiarini, P., and Donati, E., Bioleaching of Zinc from Low-Grade Complex Sulfide Ores in an Airlift by Isolated Leptospirillum Ferrooxidans, Ind. Eng. Chem. Res., 2001, vol. 40, nos. 1–2, p. 5074.

    Google Scholar 

  6. Mohanty, K., Dasb, D., and Nath, B.M., Treatment of Phenolic Wastewater in a Novel Multi-Stage External Loop Airlift Reactor Using Activated Carbon, Sep. Purif. Technol., 2008, vol. 58, no. 3, p. 311.

    Article  CAS  Google Scholar 

  7. Cerri, M.O., Futiwaki, L., Jesus, C.D.F., et al., Average Shear Rate for Non-Newtonian Fluids in a Concentric-Tube Airlift Bioreactor, Biochem. Eng. J., 2008, vol. 39, no. 1, p. 51.

    Article  CAS  Google Scholar 

  8. Kai-Chee, L. and Jun, L., External Loop Inversed Fluidized Bed Airlift Bioreactor (EIFBAB) for Treating High Strength Phenolic Wastewater, Chem. Eng. Sci., 2001, vol. 56, nos. 21–22, p. 6171.

    Google Scholar 

  9. Giovannettone, J.P. and Gulliver, J.S., Gas Transfer and Liquid Dispersion inside a Deep Airlift Reactor, AIChE J., 2008, vol. 54, no. 4, p. 850.

    Article  CAS  Google Scholar 

  10. Ozbek, B. and Gayik. S., The Studies on the Oxygen Mass Transfer Coefficient in a Bioreactor, Process Biochem., 2001, vol. 36, nos. 8–9, p. 729.

    Article  CAS  Google Scholar 

  11. Choi, K.H., Chisti, Y., and Moo-Young, M., Influence of the Gas-Liquid Separator Design on Hydrodynamic and Mass Transfer Performance of Split-Channel Airlift Reactors, J. Chem. Technol. Biotechnol., 1995, vol. 62, no. 4, p. 327.

    Article  CAS  Google Scholar 

  12. Hwang, S. and Cheng, Y., Gas Hold-up and Liquid Velocity in Three-Phase Internal-Loop Airlift Reactors, Chem. Eng. Sci., 1997, vol. 52, nos. 21–22, p. 3949.

    CAS  Google Scholar 

  13. Bendjaballah, N., Dhaouadi, H., Poncin, et al., Hydrodynamics and Flow Regimes in External Loop Airlift Reactors, Chem. Eng. Sci., 1999, vol. 54, no. 21, p. 5211.

    Article  CAS  Google Scholar 

  14. Jakobsen, H.A., Sann’s, B.H., Grevskott, S., and Svendsen, H.F., Modeling of Bubble Driven Vertical Flows, Ind. Eng. Chem. Res., 1997, vol. 36, no. 21, p. 4052.

    Article  CAS  Google Scholar 

  15. Pan, Y., Dudukovic, M.P., and Chang, M., Numerical Investigation of Gas-Driven Flow in 2D Bubble Columns, AIChE J., 2000, vol. 46, no. 3, p. 434.

    Article  CAS  Google Scholar 

  16. Sanyal, J., Vasquez, S., Roy, S., and Dudukovic, M.P., Numerical Simulation of Gas-Liquid Dynamics in Cylindrical Bubble Column Reactors, Chem. Eng. Sci., 1999, vol. 54, no. 21, p. 5071.

    Article  CAS  Google Scholar 

  17. Sokolichin, A. and Eigenberger, G., Applicability of the Standard Turbulence Model to the Dynamic Simulation of Bubble Columns: Part I. Detailed Numerical Simulations, Chem. Eng. Sci., 1999, vol. 54, p. 2273.

    Article  CAS  Google Scholar 

  18. Krishna, R., Urseanu, M.I., van Baten, J.M., and Ellenberger, J., Influence of Scale on the Hydrodynamics of Bubble Columns Operating in the Churn-Turbulent Regime: Experiments versus Eulerian Simulations, Chem. Eng. Sci., 1999, vol. 54, no. 21, p. 4903.

    Article  CAS  Google Scholar 

  19. Krishna, R., van Baten, J.M., and Urseanu, M.I., Three-Phase Eulerian Simulations of Bubble Column Reactors Operating in the Churn-Turbulent Flow Regime: A Scale Up Strategy, Chem. Eng. Sci., 2000, vol. 55, no. 16, p. 3275.

    Article  CAS  Google Scholar 

  20. Liu, R., Huang, X., Wang, C., et al., Study on Hydraulic Characteristics in a Submerged Membrane Bioreactor Process, Process Biochem., 2000, vol. 36, no. 3, p. 249.

    Article  CAS  Google Scholar 

  21. Ueda, T., Hata, K., Kikuoka, Y., and Seino, O., Effects of Aeration on Suction Pressure in a Submerged Membrane Bioreactor, Water Res., 1997, vol. 31, no. 3, p. 489.

    Article  CAS  Google Scholar 

  22. Le-Clech, P., Jefferson, B., and Judd, S.J., Impact of Aeration, Solids Concentration and Membrane Characteristics on the Hydraulic Performance of a Membrane Bioreactor, J. Membr. Sci., 2003, vol. 218, nos. 1–2, p. 117.

    Article  CAS  Google Scholar 

  23. Baek, S.H. and Pagilla, K.R., Simultaneous Nitrification and Denitrification of Municipal Wastewater in Aerobic Membrane Bioreactors, Water Environ. Res., 2008, vol. 8, no. 2, p. 109.

    Article  Google Scholar 

  24. Hoff, K.A., Poplsteinova, J., Jakobsen, et al., Modeling of Membrane Reactor, Int. J. Chem. Reactor Eng., 2003, vol. 1, p. A9.

    Google Scholar 

  25. Versteeg, H. and Malalasekra, W., An Introduction to Computational Fluid Dynamics: The Finite Volume Method, New York: Prentice Hall, 1995.

    Google Scholar 

  26. Gidaspow, D., Bezburuah, R., and Ding, J., Hydrodynamics of Circulating Fluidized Beds: Kinetic Theory Approach in Fluidization, Proc. 7th Engineering Foundation Conf. on Fluidization, Brisbane, 1992, p. 75.

  27. Hekmat, A., Amooghin, A.E., and Moraveji, M.K., CFD Simulation of Gas-Liquid Flow Behavior in an Air-Lift Reactor: Determination of the Optimum Distance of the Draft Tube, Simul. Modell. Pract., Theory, 2010, vol. 18, no. 7, p. 927.

    Article  Google Scholar 

  28. Tabib, M.V., Roy, S.A., and Joshi, J.B., CFD Simulation of Bubble Column-An Analysis of Interface Forces and Turbulence Models, Chem. Eng. J., 2008, vol. 139, no. 3, p. 589.

    Article  CAS  Google Scholar 

  29. Prieske, H., Drews, A., and Kraume, M., Prediction of the Circulation Velocity in a Membrane Bioreactor, Desalination, 2008, vol. 231, nos. 1–3, p. 219.

    Article  CAS  Google Scholar 

  30. van Benthum, W.A.J., van der Lans, R.G.J.M., van Loosdrecht, M.C.M., and Heijnen, J.J., Bubble Recirculation Regimes in an Internal-Loop Airlift Reactor, Chem. Eng. Sci., 1999, vol. 54, no. 18, p. 3995.

    Article  Google Scholar 

  31. Chisti, M.Y., Halard, B., and Moo-Young, M., Liquid Circulation in Airlift Reactors, Chem. Eng. Sci., 1988, vol. 43, no. 3, p. 451.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Moraveji.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moraveji, M.K., Sajjadi, B. & Davarnejad, R. CFD Simulation of hold-up and liquid circulation velocity in a membrane airlift reactor. Theor Found Chem Eng 46, 266–273 (2012). https://doi.org/10.1134/S0040579512020078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579512020078

Keywords

Navigation