Skip to main content
Log in

Limiting kinetic equation for describing a first-order chemical reaction with spatially nonuniform diffusion and kinetic coefficients

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A spatially nonuniform system in which a first-order chemical reaction occurs is considered. Both the diffusion coefficient and the kinetic coefficient of the reaction are assumed to be dependent on spatial coordinates. An asymptotically valid method is proposed for reducing a diffusion equation (under the described conditions) in the presence of a source (a reaction) to a simple kinetic equation containing a constant kinetic coefficient. A functional is derived that makes it possible to use variational methods for determining the kinetic coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barelko, V.V., Ivanova, A.N., and Tarnopol’skii, B.L., Violation of the Autowave Solution Uniqueness Postulate in Problems of the Thermal Critical Phenomena in Heterogeneous Catalytic Processeson the Smooth Nonporous Catalyst Surface, Dokl. Phys. Chem., 1997, vol. 353, nos. 1–3, p. 99.

    Google Scholar 

  2. Zon, B.A., Ledovskii, S.B., and Likholet, A.N., Lattice Diffusion of Impurity Enhanced by a Surface Heterogeneous Reaction, Tech. Phys., 2000, vol. 45, no. 4, p. 419.

    Article  CAS  Google Scholar 

  3. Malkovich, R.Sh., On the Analysis of Coordinate-Dependent Diffusion, Tech. Phys., 2006, vol. 51, no. 2, p. 283.

    Article  CAS  Google Scholar 

  4. Monin, A.S. and Yaglom, A.M., Statisticheskaya gidromekhanika (Statistical Hydromechanics), Moscow: Nauka, 1965, part 1.

    Google Scholar 

  5. Kafarov, V.V., Osnovy massoperedachi (Fundamentals of Mass Transfer), Moscow: Vysshaya Shkola, 1979.

    Google Scholar 

  6. Moshinskii, A.I., Diffusion Model with Circulation Zone in Apparatus, Theor. Found. Chem. Eng., 1988, vol. 22, no. 3, p. 227.

    Google Scholar 

  7. Moshinskii, A.I., Impurity Dispersion in Nonuniform Flows, J. Appl. Mech. Tech. Phys., 1990, vol. 31, no. 4, p. 607.

    Article  Google Scholar 

  8. Taylor, G., Dispersion of Soluble Matter in Solvent Flowing Slowly through a Tube, Proc. R. Soc. London, Ser. A, 1953, vol. 219, no. 1137, p. 186.

    Article  CAS  Google Scholar 

  9. Dil’man, V.V. and Kronberg, A.E., Relaxation Phenomena in Axial Dispersion, Teor. Osn. Khim. Tekhnol., 1983, vol. 17, no. 5, p. 614.

    Google Scholar 

  10. Aris, R., On the Dispersion of a Solute in a Fluid Flowing through a Tube, Proc. R. Soc. London, Ser. A, 1956, vol. 235, no. 1200, p. 67.

    Article  Google Scholar 

  11. Maron, V.I., Propagation of an Additive in a Laminar Flow in a Round Tube, Fluid Dyn., 1972, vol. 7, no. 3, p. 449.

    Article  Google Scholar 

  12. Cole, J.D., Perturbation Methods in Applied Mathematics, Waltham, Mass.: Blaisdell, 1968.

    Google Scholar 

  13. Nayfeh, A.H., Perturbation Methods, New York: Wiley, 1973.

    Google Scholar 

  14. Mikhlin, S.G., Kurs matematicheskoi fiziki (Course of Mathematical Physics), Moscow: Nauka, 1968.

    Google Scholar 

  15. Rektoris, K., Variatsionnye metody v matematicheskoi fizike i tekhnike (Variational Methods in Mathematical Physics and Engineering), Moscow: Mir, 1985.

    Google Scholar 

  16. Titchmarsh, E.Ch., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsial’nymi uravneniyami vtorogo poryadka (Eigenfunction Expansions Associated with Second-Order Differential Equations), Moscow: Inostrannaya Literatura, 1961, vol. 2.

    Google Scholar 

  17. Kantorovich, L.V. and Krylov, V.I., Priblizhennye metody vysshego analyza (Approximate Methods of Advanced Analysis), Moscow: Fizmatgiz, 1962.

    Google Scholar 

  18. Lebedev, N.N., Spetsial’nye funktsii i ikh prilozheniya (Special Functions and Their Applications), Moscow: Fizmatgiz, 1963.

    Google Scholar 

  19. Moshinskii, A.I., On the Dispersion of a Substance in a Round Tube in the Presence of a Source, Sibirskii Fiz.-Tekhn. Zh., 1992, no. 4, p. 16.

  20. Haken, H., Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices, Berlin: Springer-Verlag, 1983.

    Google Scholar 

  21. Dil’man, V.V., Estimating the Axial Dispersion of Impurity in the Turbulent Flow of a Liquid in a Tube, Khim. Prom-st., 1989, no. 8, p. 593.

  22. De Groot, S.R and Mazur, P., Non-Equilibrium Thermodynamics, Amsterdam: North-Holland, 1962.

    Google Scholar 

  23. Gyarmati, I., Non-Equilibrium Thermodynamics: Field Theory and Variational Principles, Berlin: Springer-Verlag, 1970.

    Google Scholar 

  24. Zino, I.E. and Tropp, E.A., Asimptoticheskie metody v zadachakh teorii teploprovodnosti i termouprugosti (Asymptotic Methods in Problems of the Theory of Thermal Conduction and Thermoelasticity), Leningrad: Leningr. Gos. Univ., 1978.

    Google Scholar 

  25. Moshinskii, A.I., Limit Form of the Equation of Anisotropic Heat Conduction in a Layer, J. Eng. Phys. Thermophys., 1999, vol. 72, no. 5, p. 827.

    Article  CAS  Google Scholar 

  26. Moshinskii, A.I., Equivalent Diffusion in a Thin Film Flow with a Non-One-Dimensional Velocity Field and Anisotropic Diffusion Tensor, Fluid Dyn., 2004, vol. 39, no. 2, p. 230.

    Article  Google Scholar 

  27. Westerterp, K.R., Dil’man, V.V., Kronberg, A.E., and Benneker, A., Wave Model of Axial Dispersion, Teor. Osn. Khim. Tekhnol., 1995, vol. 29, no. 6, p. 580.

    Google Scholar 

  28. Moshinskii, A.I., On the Axial Dispersion of a Substance in Stirred Apparatuses with Allowance for Relaxation Phenomena, Zh. Prikl. Khim., 1996, vol. 69, no. 6, p. 973.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Moshinskii.

Additional information

Original Russian Text © A.I. Moshinskii, 2011, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2011, Vol. 45, No. 6, pp. 679–686.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moshinskii, A.I. Limiting kinetic equation for describing a first-order chemical reaction with spatially nonuniform diffusion and kinetic coefficients. Theor Found Chem Eng 45, 868–875 (2011). https://doi.org/10.1134/S0040579511050277

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579511050277

Keywords

Navigation