Skip to main content
Log in

A model of an evolutionary route for the preparation of functional materials

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A mesokinetic model of the formation of a solid substance and the change in its properties under the action of factors that transform a substance into a functional material is proposed. Equations are introduced that represent the conditions of preservation of the number of molecules and particles of the substance during their nucleation, growth, and aggregation in supersaturated environments as well as during the ordering of the particles after the imposition of a temperature field and the introduction of additives. The equations describe the rate of change in the state distribution function of particles and can be reduced to the Liouville equation and the Fokker-Planck equation. The model contains unknown frequency functions subject to experimental determination. After these functions are determined, the model makes it possible to construct a methodological scheme for seeking the optimum route for the preparation of a new nanomaterial with desired properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Handbook of Nanostructured Materials and Nanotechnology, Nalwa, H.S., Ed., San Diego: Academic, 2000, vols. 1–5.

    Google Scholar 

  2. Akkar, A., Poorly Soluble Drugs: Formulation by Nanocrystals and Sol-Emulsion Technologies, Phil. Deg. Dissertation, Berlin: Free University of Berlin, 2004.

    Google Scholar 

  3. European Technology Platform on Nanomedicine: Vision Paper and Basis for a Strategic Research Agenda for Nanomedicine, Luxembourg: European Commission, 2005.

  4. Melikhov, I.V., Simonov, E.F., Rudin, V.N., and Bozhevol’nov, V.E., The Problem of Optimal Technologies for Functional Materials, Theor. Found. Chem. Eng., 2010, vol. 44, no. 6, p. 829.

    Article  CAS  Google Scholar 

  5. Tret’yakov, Yu.D., Development of Inorganic Chemistry as the Fundamental Basis of New Generations of Functional Materials, Usp. Khim., 2004, vol. 74, no. 9, p. 899.

    Google Scholar 

  6. Melikhov, I.V., Fiziko-khimicheskaya evolyutsiya tverdogo veshchestva (Physico-Chemical Evolution of Solid Matter), Moscow: Binom, 2006.

    Google Scholar 

  7. Melikhov, I.V., Mikheeva, I.E., and Rudin, V.N., Directed Aggregation in Ultrafine Suspensions, Kolloidn. Zh., 1988, vol. 50, no. 5, p. 885.

    CAS  Google Scholar 

  8. Hierarchical Structures in Biology as a Guide for New Materials Technology, Tirrel, D.A., Ed., Washington, DC: National Academy Press, 1994.

    Google Scholar 

  9. Weng, C., Kouvetakis, J., and Chizmeshya, A.V.G., Si-Ge-Based Oxynitrides: From Molecules to Solids, Chem. Mater., 2010, vol. 22, p. 3884.

    Article  CAS  Google Scholar 

  10. Melikhov, I.V., Evolutional Approach to Formation of Nanostructures, Nanosist.: Fiz., Khim., Mat., 2010, vol. 1, no. 1, p. 148.

    Google Scholar 

  11. Ajayan, P.M., Schodler, L.S., and Braun, P.V., Nanocomposite Science and Technology, Weinheim: Wiley, 2003.

    Book  Google Scholar 

  12. Tian, Z., Voigh, J.A., Mchenzie, B., et al., Complex and Oriented ZnO Nanostructures, Nat. Mater., 2003, vol. 2, no. 12, p. 821.

    Article  CAS  Google Scholar 

  13. Andersen, J.U., Bonderup, E., and Hansen, K., On the Concept of Temperature for a Small Isolated System, J. Chem. Phys., 2001, vol. 114, p. 6518.

    Article  CAS  Google Scholar 

  14. Choi, C.H. and Lee, H-J., Theoretical Study of C2O Fullerene Dimerization: A Facile [2+2] Cycloaddition, Chem. Phys. Lett., 2002, vol. 359, p. 446.

    Article  CAS  Google Scholar 

  15. Melikhov, I.V., Berliner, L.B., and Slin’ko, M.G., Effect of the Dispersion of Crystal Growth Velocity on the Kinetics of Mass Crystallization, Dokl. Akad. Nauk SSSR, 1985, vol. 283, no. 4, p. 917.

    CAS  Google Scholar 

  16. Taubert, A., Glasser, G., and Palms, D., Kinetics and Particle Formation Mechanism of Zinc Oxide in Polymer-Controlled Precipitation from Aqueous Solution, Langmuir, 2002, vol. 18, p. 4488.

    Article  CAS  Google Scholar 

  17. Melikhov, I.V., Kelebeev, A.S., and Bacic, S., Electron Microscopic Study of Nucleation and Growth of Highly Dispersed Solid Phase, J. Colloid Interface Sci., 1986, vol. 112, no. 1, p. 54.

    Article  CAS  Google Scholar 

  18. Su, X., Sun, K., Cui, F.Z., and Landis, W.J., Organization of Apatite Crystals in Human Woven Bone, Bone, 2003, vol. 32, p. 150.

    Article  CAS  Google Scholar 

  19. Melikhov, I.V. and Berliner, L.B., Kinetics of Periodic Crystallization in the Presence of Seed Crystals Growing at a Fluctuating Rate, Teor. Osn. Khim. Tekhnol., 1985, vol. 19, no. 2, p. 158.

    CAS  Google Scholar 

  20. Gorelik, A.G. and Amitin, A.V., Desublimatsiya v khimicheskoi promyshlennosti (Desublimation in Chemical Industry), Moscow: Khimiya, 1986.

    Google Scholar 

  21. Valle-Vigon, P., Sevilla, M., and Fuertes, A.B., Synthesis of Uniform Mesoporous Carbon Capsules by Carbonization of Organosilica Nanospheres, Chem. Mater., 2010, vol. 22, p. 2526.

    Article  CAS  Google Scholar 

  22. Shen, Y., Fabrication and Thermal Evolution of Nanoparticles in SiO2 by Zn Ion Implantation, J. Cryst. Growth, 2009, vol. 331, nos. 23–24, p. 4605.

    Article  Google Scholar 

  23. Brittain, H.G., Polymorphism in Pharmaceutical Solids, New York: Marcel Dekker, 1999.

    Google Scholar 

  24. Polymorphism in the Pharmaceutical Industry, Hilfiker, R., Ed., Weinheim: Wiley, 2006.

    Google Scholar 

  25. Polymorphism in Pharmaceutical Solids, Drugs and the Pharmaceutical Sciences, vol. 192, New York: Informa Healthcare, 2009.

  26. Melikhov, I.V., Komarov, V.F., and Kibal’chits, V., Relay-Race Crystallization of an Amorphous Dispersed Phase in Hydroxylapatite Synthesis, Dokl. Akad. Nauk SSSR, 1981, vol. 256, no. 6, p. 1406.

    CAS  Google Scholar 

  27. Melikhov, I.V., Kozlovskaya, E.D., and Berliner, L.B., Relay-Race Crystallization of an Amorphous Dispersed Phase, Zh. Fiz. Khim., 1988, vol. 62, no. 3, p. 765.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Melikhov.

Additional information

Original Russian Text © I.V. Melikhov, E.F. Simonov, 2011, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2011, Vol. 45, No. 5, pp. 490–497.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melikhov, I.V., Simonov, E.F. A model of an evolutionary route for the preparation of functional materials. Theor Found Chem Eng 45, 581–588 (2011). https://doi.org/10.1134/S0040579511050253

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579511050253

Keywords

Navigation