Skip to main content
Log in

Enhanced heat transfer under conditions of liquid boiling in a thin layer at reduced pressure

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The problem of heat transfer intensification by increasing the surface of heat transfer is considered. Estimations of an increase in interfacial area are performed when structures in the shape of funnels appear in the thin layer of a boiling liquid under the effect of the reactive force of phase transition. The work of the formation of a single funnel at the interface is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gimbutis, G., Teploobmen pri gravitatsionnom stekanii plenki zhidkosti (Heat Transfer under Conditions of the Gravitational Flow of a Liquid Film), Vilnus: Mokslas, 1988.

    Google Scholar 

  2. Katto, Y., Critical Heat Flux, Int. J. Multiphase Flow, 1994, vol. 20, p. 53.

    Article  CAS  Google Scholar 

  3. Sanochkin, Yu.V., Thermocapillary Convection in a Thin Liquid Layer Locally Heated from Above, Zh. Prikl. Mekh. Tekh. Fiz., 1983, no. 6, p. 134.

  4. Zueva, A.Yu., Mathematical Modeling of Photoinduced Thermocapillary Convection in the Layer of a Transparent Liquid on an Absorbing Support, Extended Abstract of Cand. Sci. (Phys.-Math.) Dissertation, Tyumen, 2007.

  5. Avksentyuk, B.P. and Bochkarev, A.A., Interaction of a Heated Solid with the Free Surface of a Liquid, Zh. Tekh. Fiz., 1985, vol. 55, no. 4, p. 797.

    Google Scholar 

  6. Oron, A., Davis, S.H., and Bankoff, S.G., Long-Scale Evolution of Thin Liquid Films, Rev. Mod. Phys., 1997, vol. 69, no. 3, p. 931.

    Article  CAS  Google Scholar 

  7. Zaitsev, D.V. and Kabov, O.A., Study of the Thermocapillary Effect on a Wavy Falling Film Using a Fiber Optical Thickness Probe, Exp. Fluids, 2005, vol. 39, no. 4, p. 712.

    Article  Google Scholar 

  8. Zaitsev, D.V., Rodionov, D.A., and Kabov, O.A., Study of Thermocapillary Film Rupture Using a Fiber Optical Thickness Probe, Microgravity Sci. Technol, 2007, vol. 19,nos. 3–4, p. 100.

    Article  Google Scholar 

  9. Tolubinskii, V.I., Antonenko, V.A., and Ostrovskii, Yu.N., Heat Transfer under Conditions of Vaporization in Thin Films, Prom. Teplotekh., 1981, vol. 3, no. 3, p. 9.

    CAS  Google Scholar 

  10. Nishikawa, K., Kusuda, H., Yamasaki, K., and Tanaka, K., Nucleate Boiling at Low Liquid Levels, Bull. JASME, 1967, vol. 10, no. 38, p. 328.

    Article  CAS  Google Scholar 

  11. Tolubinskii, V.I., Antonenko, V.A., Kriveshko, A.A., and Ostrovskii, Yu.N., Suppression of Bubble Boiling in a Stationary Liquid Film, Teplofiz. Vys. Temp., 1977, vol. 15, no. 4, p. 822.

    CAS  Google Scholar 

  12. Tolubinskii, V.I., Antonenko, V.A., and Ostrovskii, Yu.N., Some Features of Heat Transfer in the Thin Films of a Boiling Liquid, in Teploobmen 1978. Sovetskie issledovaniya (Heat Transfer 1978: Soviet Studies), Moscow, 1980, p. 182.

  13. Gogonin, I.I., Dorokhov, A.R., and Zhukov, V.I., Study of Evaporation from a Thin Oil Layer under Vacuum, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekhn., 1989, no. 3, p. 8.

  14. Zhukov, V.I., Growth Rate of Vapor Bubbles on a Heating Surface in Boiling, Pis’ma Zh. Tekh. Fiz., 1996, vol. 22, no. 21, p. 34.

    CAS  Google Scholar 

  15. Dorokhov, A.R. and Zhukov, V.I., Bubble Growth Rate and Phenomenon of Degenerate Boiling of a Fluid in the Form of Film Vaporization, J. Eng. Phys. Thermophys., 1999, vol. 72, no. 3, p. 430.

    Article  CAS  Google Scholar 

  16. Pavlov, P.A., Dinamika vskipaniya sil’no peregretykh zhidkostei (Boiling Dynamics of Highly Superheated Liquids), Sverdlovsk: Ural. Otd. Akad. Nauk SSSR, 1988.

    Google Scholar 

  17. Hickman, K., Studies in High Vacuum Evaporation. Part III. — Surface Behavior in the Pot Still, Ind. Eng. Chem., 1952, vol. 44, p. 1892.

    Article  CAS  Google Scholar 

  18. Hickman, K., Torpid Phenomena and Pump Oils, J. Vac. Sci. Tech, 1972, vol. 9, no. 2, p. 960.

    Article  CAS  Google Scholar 

  19. Palmer, H.J. and Maheshri, J.C., Enhanced Interfacial Heat Transfer by Differential Vapor Recoil Instabilities, Int. J. Heat Mass Transfer, 1981, vol. 24, no. 1, p. 117.

    Article  Google Scholar 

  20. Palmer, H.J., The Hydrodynamic Stability of Rapidly Evaporating Liquids at Reduced Pressure, J. Fluid Mech., 1976, vol. 75, p. 487.

    Article  Google Scholar 

  21. Maheshri, J.C. and Palmer, H.J., The Influence of Lateral Pressure Variations on the Stability of Rapidly Evaporating Liquids at Reduced Pressure, AIChE J., 1979, vol. 25, p. 183.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Zhukov.

Additional information

Original Russian Text © V.I. Zhukov, 2011, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2011, Vol. 45, No. 5, pp. 602–606.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhukov, V.I. Enhanced heat transfer under conditions of liquid boiling in a thin layer at reduced pressure. Theor Found Chem Eng 45, 690–694 (2011). https://doi.org/10.1134/S0040579511040154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579511040154

Keywords

Navigation