Skip to main content
Log in

Modeling of pressure losses for the slug flow of a gas–liquid mixture in mini- and microchannels

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

In addition to the previously constructed model of the hydrodynamics of a gas-liquid slug flow, a mathematical model is developed that describes pressure losses taking into account the rearrangement of a velocity profile in liquid slugs and energy losses on the formation and renewal of interfacial area during the motion of bubbles. The contribution of different forms of pressure losses in capillaries is analyzed. It is shown that in microchannels tangential stresses on the surface of a bubble substantially affect the total pressure losses. It is found that the length of bubbles does not affect the rate of surface formation and respective pressure losses if bubbles have the same velocity. The results of modeling are in satisfactory agreement with experimental data of other researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hessel, V., Löwe, H., Müller, A., and Kolb, G., Chemical Micro Process Engineering. Processing and Plants. Weinheim: Wiley-VCH Verlag, 2005.

    Book  Google Scholar 

  2. Hessel, V., Mikroverfahrenstechnik Fuer Die Chemische Produktion: Reaktorkonzepte, Anwendungen, Scale-Up, Kostenanalyse, DECHEMA-Regional-Kolloquium “Neue Entwicklungen in der Mikroreaktionstechnik und Mikrotechnik”. Magdeburg: Max-Planck-Institut fuer Dynamik komplexer Technischer Systeme, 2006p. 3.

    Google Scholar 

  3. Roy, S., Bauer, T., Al-Dahhan, M., Lehner, P., and Turek, T., Monoliths as Multiphase Reactors: A Review, AIChE J., 2004, vol. 50, no. 11, p. 2918.

    Article  CAS  Google Scholar 

  4. Kreutzer, M.T., Kapteijn, F., Moulijn, J.A., and Heiszwolf, J.J., Multiphase Monolith Reactors: Chemical Reaction Engineering of Segmented Flow in Microchannels, Chem. Eng. Sci., 2005, vol. 60, p. 5895.

    Article  CAS  Google Scholar 

  5. Bauer, T., Shubert, M., Lange, R., and Abiev, R.Sh., Intensification of Heterogeneous Catalytic Gas-Liquid Reactions in Reactors with a Multichannel Monolith Catalyst, Zh. Prikl. Khim., 2006, vol. 79, no. 7, p. 1057.

    Google Scholar 

  6. Serizawa, A., Feng, Z., and Kawara, Z., Two-Phase Flow in Microchannels, Exp. Therm. Fluid Sci., 2002, vol. 26, p. 703.

    Article  CAS  Google Scholar 

  7. Fukano, T., Kariyasaki, A., and Ide, H., Fundamental Data of the Gas Liquid Two Phase Flow, Proc. 3rd Int. Conf. on Microchannels and Minichannels, Toronto, 2005, p. 1.

  8. Kawahara, A., Chung, P.M.-Y., and Kawaji M., Investigation of Two-Phase Flow Pattern, Void Fraction and Pressure Drop in a Microchannel, Int. J. Multiphase Flow, 2002, vol. 28, p. 1411.

    Article  CAS  Google Scholar 

  9. Chung, P.M.-Y. and Kawaji, M. The Effect of Channel Diameter on Adiabatic Two-Phase Flow Characteristics in Microchannels, Int. J. Multiphase Flow, 2004, vol. 30, p. 735.

    Article  CAS  Google Scholar 

  10. Liu, H., Vandu, C.O., and Krishna, R., Hydrodynamics of Taylor Flow in Vertical Capillaries: Flow Regimes, Bubble Rise Velocity, Liquid Slug Length, and Pressure Drop, Ind. Eng. Chem. Res., 2005, vol. 44, p. 4884.

    Article  CAS  Google Scholar 

  11. Kreutzer, M.T., Kapteijn, F., Moulijn, J.A., et al., Inertial and Interfacial Effects on Pressure Drop of Taylor Flow in Capillaries, AIChE J., 2005, vol. 51, p. 2428.

    Article  CAS  Google Scholar 

  12. Dukler, A.E., Moye, Wicks III, and Cleveland, R.G., Pressure Drop and Hold-Up in Two-Phase Flow, AIChE J., 1964, vol. 10, p. 38.

    Article  CAS  Google Scholar 

  13. Lockhart, R.W. and Martinelli, R.C., Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes, Chem. Eng. Prog., 1949, vol. 45, p. 39.

    Google Scholar 

  14. Chisholm, D. and Laird, A.D.K., Two-Phase Flow in Rough Tubes, Trans. ASME, 1958, vol. 80, no. 2, p. 276.

    CAS  Google Scholar 

  15. Chisholm, D., A Theoretical Basis for the Lockhart-Martinelli Correlation for Two-Phase Flow, Int. J. Heat Mass Transfer, 1967, vol. 10, p. 1767.

    Article  CAS  Google Scholar 

  16. Zhao, T.S. and Bi, Q.C., Pressure Drop Characteristics of Gas-Liquid Two-Phase Flow in Vertical Miniature Triangular Channels, Int. J. Heat Mass Transfer, 2001, vol. 44, p. 2523.

    Article  CAS  Google Scholar 

  17. Mishima, K. and Hibiki, T., Some Characteristics of Air-Water Two-Phase Flow in Small Diameter Vertical Tubes, Int. J. Multiphase Flow, 1996, vol. 22, no. 4, p. 703.

    Article  CAS  Google Scholar 

  18. Lee, H.J. and Lee, S.Y., Pressure Drop Correlations for Two-Phase Flow within Horizontal Rectangular Channels with Small Height, Int. J. Multiphase Flow, 2001, vol. 27, p. 783.

    Article  CAS  Google Scholar 

  19. Suo, M. and Griffith, P., Two-Phase Flow in Capillary Tubes, J. Basic Eng, 1964, vol. 86, p. 576.

    CAS  Google Scholar 

  20. Garimella, S., Killion, J.D., and Coleman, J.W., An Experimentally Validated Model for Two-Phase Pressure Drop in the Intermittent Flow Regime for Circular Microchannels, J. Fluids Eng.-Trans. ASME, 2002, vol. 124, p. 205.

    Article  CAS  Google Scholar 

  21. Abiev, R.Sh., Simulation of the Slug Flow of a Gas-Liquid System in Capillaries, Teor. Osn. Khim. Tekhnol., 2008, vol. 42, no. 2, p. 115 [Theor. Found. Chem. Eng. (Engl. Transl.), vol. 42, no. 2, p. 105].

    Google Scholar 

  22. Frolov, Yu.G., Kurs kolloidnoi khimii (Colloid Chemistry), Moscow: Khimiya, 1988.

    Google Scholar 

  23. Lamb, H., Gidrodinamika (Hydrodynamics), Moscow: Regulyarnaya i Khaoticheskaya Dinamika, 2003, vol. 2.

    Google Scholar 

  24. Bretherton, F.P., The Motion of Long Bubbles in Tubes, J. Fluid Mech., 1961, no. 10, p. 166.

  25. Warnier, M.J.F., de Croon, M.H.J.M., Rebrov, E.V., and Schouten, J.C., Pressure Drop of Gas-Liquid Taylor Flow in Round Micro-Capillaries for Low to Intermediate Reynolds Numbers, Microfluidics and Nanofluidics, 2010, vol. 8, no. 1, p. 33.

    Article  CAS  Google Scholar 

  26. Aussillous, P. and Quéré, D., Quick Deposition of a Fluid on the Wall of a Tube, Phys. Fluids, 2000, vol. 15, no. 10, p. 2367.

    Article  Google Scholar 

  27. Abiev, R.Sh., Circulation and Bypass Modes of the Slug Flow of a Gas-Liquid Mixture in Capillaries, Teor. Osn. Khim. Tekhnol., 2009, vol. 43, no. 3, p. 313 [Theor. Found. Chem. Eng. (Engl. Transl.), vol. 43, no. 3, p. 298].

    Google Scholar 

  28. Slezkin, N.A., Dinamika vyazkoi neszhimaemoi zhidkosti (Dynamics of Viscous Incompressible Liquid), Moscow: Gostekhteorizdat, 1955.

    Google Scholar 

  29. Abiev, R.Sh., On the Shape of Bubbles in the Taylor Flow Regime for a Gas-Liquid Mixture in Capillaries, Tez. dokl. Mezhdunar. konf. “Matematicheskie metody v tekhnike i tekhnologiyakh” (Proc. Int. Conf. on Mathematical Methods in Engineering and Technologies), Pskov: PPI, 2009, vol. 5, p. 74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sh. Abiev.

Additional information

Original Russian Text © R.Sh. Abiev, 2011, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2011, Vol. 45, No. 2, pp. 170–177.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abiev, R.S. Modeling of pressure losses for the slug flow of a gas–liquid mixture in mini- and microchannels. Theor Found Chem Eng 45, 156–163 (2011). https://doi.org/10.1134/S0040579511020011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579511020011

Keywords

Navigation